Carolin Rieg

Frau M.Sc.

Doktorandin
Institut für Technische Chemie

Kontakt

Pfaffenwaldring 55
70569 Stuttgart
Deutschland
Raum: 0.727

Fachgebiet

Festkörper-NMR-Methoden für die Untersuchung der Eigenschaften und räumlichen Verteilung von verankerten Metallkomplexen in porösen Feststoffen im Rahmen des CRC 1333.

  1. 2023

    1. C. Rieg u. a., „Determination of accessibility and spatial distribution of chiral Rh diene complexes immobilized on SBA-15 via phosphine-based solid-state NMR probe molecules“, Catalysis science & technology, Bd. 13, Nr. 2, Art. Nr. 2, 2023, doi: 10.1039/d2cy01578a.
    2. S. Peters u. a., „Accessibility of Reactants and Neighborhood of Mo Species during Methane Aromatization Uncovered by Operando NAP-XPS and MAS NMR“, ACS catalysis, Bd. 13, Nr. 19, Art. Nr. 19, 2023, doi: 10.1021/acscatal.3c02385.
    3. C. Rieg und M. Dyballa, „Replication data of Dyballa group for: ‚Determination of Accessibility and Spatial Distribution of Chiral Rh Diene Complexes Immobilized on SBA-15 via Phosphine-based NMR Probe Molecules‘“. 2023. doi: 10.18419/darus-3306.
    4. M. Schnierle u. a., „How Solid Surfaces Control Stability and Interactions of Supported Cationic Cu-I(dppf) Complexes : A Solid-State NMR Study“, Inorganic chemistry, Bd. 62, Nr. 19, Art. Nr. 19, 2023, doi: 10.1021/acs.inorgchem.3c00351.
    5. D. Dittmann, C. Rieg, Z. Li, E. Kaya, und M. Dyballa, „Better Performance in C2-Conversion to Aromatics by Optimized Feed and Catalysts“, Energy & fuels, Bd. 37, Nr. 6, Art. Nr. 6, 2023, doi: 10.1021/acs.energyfuels.3c00356.
  2. 2022

    1. Z. Li, D. Dittmann, C. Rieg, M. Benz, und M. Dyballa, „Confinement and surface sites control methanol adsorbate stability on MFI zeolites, SBA-15, and a silica-supported heteropoly acid“, Catalysis science & technology, Bd. 12, Nr. 7, Art. Nr. 7, 2022, doi: 10.1039/d1cy02330f.
    2. Z. Li, D. Dittmann, C. Rieg, M. Benz, und M. Dyballa, „Hydronium ion and water complexes vs. methanol on solid catalyst surfaces : how confinement influences stability and reactivity“, Catalysis science & technology, Bd. 12, Nr. 16, Art. Nr. 16, 2022, doi: 10.1039/d2cy00829g.
    3. C. Rieg u. a., „Publication data of Dyballa group for: ‚Introducing a Novel Method for Probing Accessibility, Local Environment and Spatial Distribution of Oxidative Sites on Solid Catalysts using Trimethylphosphine‘“. 2022. doi: 10.18419/darus-2992.
    4. C. Rieg, „Entwicklung einer MAS-NMR-basierten Methode zur Bestimmung der Zugänglichkeit von aktiven Zentren in porösen Materialien mit Sondenmolekülen auf Phosphanbasis“, Dissertation, Universität Stuttgart, Stuttgart, 2022. doi: 10.18419/opus-12469.
    5. C. Rieg u. a., „Introducing a Novel Method for Probing Accessibility, Local Environment, and Spatial Distribution of Oxidative Sites on Solid Catalysts Using Trimethylphosphine“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 126, Nr. 31, Art. Nr. 31, 2022, doi: 10.1021/acs.jpcc.2c04114.
  3. 2021

    1. C. Rieg u. a., „A Method for the Selective Quantification of Brønsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 125, Nr. 1, Art. Nr. 1, 2021, doi: 10.1021/acs.jpcc.0c09384.
    2. C. Rieg, „Publication data of C1 group for: Quantitative Distinction between Noble Metals Located in Mesopores from those on the external Surface“. 2021. doi: 10.18419/darus-2119.
    3. C. Rieg, „Publication data for: Ä Method for the Selective Quantification of Bronsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites" - data from Dyballa group“. 2021. doi: 10.18419/darus-1326.
    4. C. Rieg, „Publication data for: ‚Noble metal location in porous supports determined by reaction with phosphines - data from Dyballa group‘“. 2021. doi: 10.18419/darus-1253.
    5. Z. Li u. a., „The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts“, Materials chemistry frontiers, Bd. 5, Nr. 11, Art. Nr. 11, 2021, doi: 10.1039/d1qm00282a.
    6. Z. Li u. a., „Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials“, Adsorption, Bd. 27, Nr. 1, Art. Nr. 1, 2021, doi: 10.1007/s10450-020-00275-8.
    7. C. Rieg u. a., „Noble Metal Location in Porous Supports Determined by Reaction with Phosphines“, Microporous and mesoporous materials, Bd. 310, S. 110594, 2021, doi: 10.1016/j.micromeso.2020.110594.
    8. C. Rieg u. a., „Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface“, Chemistry - a European journal, Bd. 27, Nr. 68, Art. Nr. 68, 2021, doi: 10.1002/chem.202102076.
  4. 2020

    1. M. Dyballa u. a., „Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports“, Microporous and Mesoporous Materials, Bd. 293, S. 109778, 2020, doi: 10.1016/j.micromeso.2019.109778.
  5. 2019

    1. A. Löwe u. a., „Influence of Temperature on the Performance of Gas Diffusion Electrodes in the CO2 Reduction Reaction“, ChemElectroChem, Bd. 6, Nr. 17, Art. Nr. 17, 2019, doi: 10.1002/celc.201900872.
    2. M. Dyballa u. a., „Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports“, Microporous and Mesoporous Materials, S. 109778, 2019, doi: 10.1016/j.micromeso.2019.109778.

Betreuung des technisch chemischen Praktikums WS18/19 und WS19/20

Seit 2018 Promotion am Institut für Technische Chemie

2018 Masterarbeit am Institut für Technische Chemie

2015 Bachelorarbeit am Institut für Physikalische Chemie

2012 Abitur

H2-Chemisorption

Zum Seitenanfang