Publikationsliste des Instituts für Technische Chemie

Gesamte Publikationsliste des ITC nach Jahren geordnet

Institutionspublikationsliste

  1. 2023

    1. E. J. Wimmer, S. V. Klostermann, M. Ringenberg, J. Kästner, und D. P. Estes, „Oxo-Bridged Zr Dimers as Well-defined Models of Oxygen Vacancies on ZrO 13C“, European Journal of Inorganic Chemistry, Bd. 26, Nr. 12, Art. Nr. 12, Feb. 2023, doi: 10.1002/ejic.202200709.
    2. M. Schnierle u. a., „How Solid Surfaces Control Stability and Interactions of Supported Cationic CuI(dppf) Complexes─A Solid-State NMR Study“, Inorganic Chemistry, Bd. 62, Nr. 19, Art. Nr. 19, Mai 2023, doi: 10.1021/acs.inorgchem.3c00351.
    3. C. Rieg u. a., „Determination of accessibility and spatial distribution of chiral Rh diene complexes immobilized on SBA-15 via phosphine-based solid-state NMR probe molecules“, Catal. Sci. Technol., Bd. 13, Nr. 2, Art. Nr. 2, 2023, doi: 10.1039/D2CY01578A.
    4. S. Peters u. a., „Accessibility of Reactants and Neighborhood of Mo Species during Methane Aromatization Uncovered by Operando NAP-XPS and MAS NMR“, ACS Catalysis, Bd. 13, Nr. 19, Art. Nr. 19, Sep. 2023, doi: 10.1021/acscatal.3c02385.
    5. S. E. Maier, O. Bunjaku, E. Kaya, M. Dyballa, W. Frey, und D. P. Estes, „Surface immobilized Cu-1,10-phenanthroline complexes with α-aminophosphonate groups in the 5-position as heterogenous catalysts for efficient atom-transfer radical cyclizations“, Dalton Trans., Bd. 52, Nr. 24, Art. Nr. 24, 2023, doi: 10.1039/D3DT01467C.
    6. J. Kappler u. a., „Sulfur-Composites Derived from Poly(acrylonitrile) and Poly(vinylacetylene) – A Comparative Study on the Role of Pyridinic and Thioamidic Nitrogen“, Batteries & Supercaps, Jan. 2023, doi: 10.1002/batt.202200522.
    7. D. Häussermann, R. Schömig, B. Gehring, und Y. Traa, „Influence of the Synthesis Protocol on the Catalytic Performance of PHI-Type Zeolites for the Dehydration of Lactic Acid“, Catalysts, Bd. 13, Nr. 2, Art. Nr. 2, 2023, doi: 10.3390/catal13020261.
    8. T. Hahn u. a., „Comprehensive characterization and evaluation of the process chain and products from Euphausia superba exocuticles to chitosan“, Journal of Applied Polymer Science, Bd. 141, Nr. 2, Art. Nr. 2, Okt. 2023, doi: 10.1002/app.54789.
    9. M. Dyballa, „Solid-State NMR Probe Molecules for Catalysts and Adsorbents: Concepts, Quantification, Accessibility, and Spatial Distribution“, Energy & Fuels, Bd. 37, Nr. 23, Art. Nr. 23, Nov. 2023, doi: 10.1021/acs.energyfuels.3c03815.
    10. D. Dittmann, J. Schröder, E. Kaya, J. Mosrati, A. M. Abdel-Mageed, und M. Dyballa, „‚Quantifiable Surface Methoxy Groups on Zr(OH) Groups of UiO-66 Metal–Organic Framework: Generation from Methanol-13C and Reactivity‘“, The Journal of Physical Chemistry C, Bd. 127, Nr. 38, Art. Nr. 38, Sep. 2023, doi: 10.1021/acs.jpcc.3c04544.
    11. D. Dittmann, C. Rieg, Z. Li, E. Kaya, und M. Dyballa, „Better Performance in C2-Conversion to Aromatics by Optimized Feed and Catalysts“, Energy & Fuels 2023, 37, 6, Bd. 37, Nr. 6, Art. Nr. 6, März 2023, doi: 10.1021/acs.energyfuels.3c00356.
    12. D. Dittmann, E. Kaya, D. Strassheim, und M. Dyballa, „Influence of ZSM-5 Crystal Size on Methanol-to-Olefin (MTO) vs. Ethanol-to-Aromatics (ETA) Conversion“, Molecules, Bd. 28, Nr. 24, Art. Nr. 24, 2023, doi: 10.3390/molecules28248046.
    13. D. Dittmann, E. Kaya, und M. Dyballa, „Desilicated ZSM-5 Catalysts: Properties and Ethanol to Aromatics (ETA) Performance“, ChemCatChem, Sep. 2023, doi: 10.1002/cctc.202300716.
    14. A.-K. Beurer u. a., „Comparative study of lattice parameter and pore size of ordered mesoporous silica materials using physisorption, SAXS measurements and transmission electron microscopy“, Microporous and Mesoporous Materials, Bd. 354, S. 112508, Apr. 2023, doi: 10.1016/j.micromeso.2023.112508.
    15. B. A. Atterberry, E. Wimmer, D. P. Estes, und A. J. Rossini, „Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes“, Journal of Magnetic Resonance, Bd. 352, S. 107457, Juli 2023, doi: 10.1016/j.jmr.2023.107457.
  2. 2022

    1. C. Xu, Q. Song, N. Merdanoglu, H. Liu, und E. Klemm, „Identifying Monomeric Fe Species for Efficient Direct Methane Oxidation to C1 Oxygenates with H2O2 over Fe/MOR Catalysts“, Methane, Bd. 1, Nr. 2, Art. Nr. 2, 2022, doi: 10.3390/methane1020010.
    2. M. Stöckl, N. Claassens, S. Lindner, E. Klemm, und D. Holtmann, „Coupling electrochemical CO2 reduction to microbial product generation – identification of the gaps and opportunities“, Current Opinion in Biotechnology, Bd. 74, S. 154--163, Apr. 2022, doi: 10.1016/j.copbio.2021.11.007.
    3. K. Sato, A. Yamamoto, M. Dyballa, und M. Hunger, „Molecular adsorption by biochar produced by eco-friendly low-temperature carbonization investigated using graphene structural reconfigurations“, Green Chemistry Letters and Reviews, Bd. 15, Nr. 1, Art. Nr. 1, 2022, doi: 10.1080/17518253.2022.2048090.
    4. B. Sarkar u. a., „Remarkable Enhancement of Catalytic Activity of Cu-Complexes in the Electrochemical Hydrogen Evolution Reaction (HER) by Using Triply-Fused Porphyrin“, Jan. 2022, doi: 10.26434/chemrxiv-2021-f6l32-v2.
    5. C. Rieg u. a., „Introducing a Novel Method for Probing Accessibility, Local Environment, and Spatial Distribution of Oxidative Sites on Solid Catalysts Using Trimethylphosphine“, The Journal of Physical Chemistry C, Bd. 126, Nr. 31, Art. Nr. 31, Aug. 2022, doi: 10.1021/acs.jpcc.2c04114.
    6. M. Oßkopp u. a., „Producing formic acid at low pH values by electrochemical CO2 reduction“, Journal of CO2 Utilization, Bd. 56, S. 101823, Feb. 2022, doi: 10.1016/j.jcou.2021.101823.
    7. H. Liu u. a., „Assembling Metal Organic Layer Composites for High-Performance Electrocatalytic CO2 Reduction to Formate“, Angewandte Chemie International Edition, Bd. n/a, Nr. n/a, Art. Nr. n/a, 2022, doi: https://doi.org/10.1002/anie.202117058.
    8. Z. Li, D. Dittmann, C. Rieg, M. Benz, und M. Dyballa, „Hydronium ion and water complexes vs. methanol on solid catalyst surfaces: how confinement influences stability and reactivity“, Catal. Sci. Technol., Bd. 12, Nr. 16, Art. Nr. 16, 2022, doi: 10.1039/D2CY00829G.
    9. Z. Li, D. Dittmann, C. Rieg, M. Benz, und M. Dyballa, „Confinement and surface sites control methanol adsorbate stability on MFI zeolites, SBA-15, and a silica-supported heteropoly acid“, Catal. Sci. Technol., Bd. 12, Nr. 7, Art. Nr. 7, 2022, doi: 10.1039/D1CY02330F.
    10. T. Jaster u. a., „Electrochemical CO2 Reduction towards Multicarbon Alcohols - The Microscopic World of Catalysts &amp$\mathsemicolon$ Process Conditions“, iScience, S. 104010, März 2022, doi: 10.1016/j.isci.2022.104010.
    11. R. Himmelmann u. a., „Selective oxidation of ethanol to ethylene oxide with a dual-layer concept“, Catalysis Communications, S. 106424, Feb. 2022, doi: 10.1016/j.catcom.2022.106424.
    12. E. L. Goldstein, F. Ziegler, A.-K. Beurer, Y. Traa, J. R. Bruckner, und M. R. Buchmeiser, „Cationic Molybdenum Imido Alkylidene              $łess$i$\greater$N$łess$/i$\greater$              -Heterocyclic Carbene Complexes Confined in Mesoporous Silica: Tuning Transition States Towards              $łess$i$\greater$Z$łess$/i$\greater$              -Selective Ring-Opening Cross-Metathesis“, ChemCatChem, Bd. 14, Nr. 21, Art. Nr. 21, Okt. 2022, doi: 10.1002/cctc.202201008.
    13. A. Gawel u. a., „Electrochemical CO2 Reduction - The Macroscopic World of Electrode Design, Reactor Concepts &amp$\mathsemicolon$ Economic Aspects“, iScience, S. 104011, März 2022, doi: 10.1016/j.isci.2022.104011.
    14. S. Chandra u. a., „Remarkable Enhancement of Catalytic Activity of Cu-Complexes in the Electrochemical Hydrogen Evolution Reaction by Using Triply Fused Porphyrin\ast\ast“, ChemSusChem, Bd. 16, Nr. 1, Art. Nr. 1, Dez. 2022, doi: 10.1002/cssc.202201146.
    15. D. Beierlein, D. Häussermann, Y. Traa, und E. Klemm, „Rapid Aging as a Key to Understand Deactivation of Ni/Al2O3 Catalysts Applied for the CO2 Methanation“, Catalysis Letters, 2022, doi: 10.1007/s10562-021-03884-2.
  3. 2021

    1. L. Yang u. a., „Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion“, Nature Communications, Bd. 12, Nr. 1, Art. Nr. 1, Aug. 2021, doi: 10.1038/s41467-021-24403-2.
    2. V. Schallhart, H. Berthold, E. Klemm, und L. Moeltner, „Light-Off Support for Mobile DeNOx Systems“, Chemie Ingenieur Technik, Bd. 93, Nr. 5, Art. Nr. 5, März 2021, doi: 10.1002/cite.202000212.
    3. K. Sato, T. Orihara, M. Dyballa, und M. Hunger, „Instantaneous Ex Situ Mineral Carbonation Relevant to Alkali Metals in Clay Nanoparticles“, The Journal of Physical Chemistry C, Bd. 125, Nr. 8, Art. Nr. 8, Feb. 2021, doi: 10.1021/acs.jpcc.0c11521.
    4. C. Rieg u. a., „A Method for the Selective Quantification of Brønsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites“, The Journal of Physical Chemistry C, Bd. 125, Nr. 1, Art. Nr. 1, 2021, doi: 10.1021/acs.jpcc.0c09384.
    5. C. Rieg u. a., „Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface“, Chemistry – A European Journal, Bd. 27, Nr. 68, Art. Nr. 68, 2021, doi: https://doi.org/10.1002/chem.202102076.
    6. C. Rieg u. a., „Noble metal location in porous supports determined by reaction with phosphines“, Microporous and Mesoporous Materials, Bd. 310, S. 110594, Jan. 2021, doi: 10.1016/j.micromeso.2020.110594.
    7. H.-H. Nguyen u. a., „Probing the Interactions of Immobilized Ruthenium Dihydride Complexes with Metal Oxide Surfaces by MAS NMR: Effects on CO2 Hydrogenation“, The Journal of Physical Chemistry C, Bd. 125, Nr. 27, Art. Nr. 27, Juli 2021, doi: 10.1021/acs.jpcc.1c02074.
    8. S. Maier u. a., „Immobilized Platinum Hydride Species as Catalysts for Olefin Isomerizations and Enyne Cycloisomerizations“, Organometallics, Bd. 40, Nr. 11, Art. Nr. 11, Juni 2021, doi: 10.1021/acs.organomet.1c00216.
    9. A. Löwe, M. Schmidt, F. Bienen, D. Kopljar, N. Wagner, und E. Klemm, „Optimizing Reaction Conditions and Gas Diffusion Electrodes Applied in the CO2 Reduction Reaction to Formate to Reach Current Densities up to 1.8 A cm–2“, ACS Sustainable Chemistry & Engineering, Bd. 9, Nr. 11, Art. Nr. 11, März 2021, doi: 10.1021/acssuschemeng.1c00199.
    10. Z. Li u. a., „The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts“, Mater. Chem. Front., Bd. 5, Nr. 11, Art. Nr. 11, 2021, doi: 10.1039/D1QM00282A.
    11. S. Lang, M. Dyballa, Y. Traa, D. Estes, E. Klemm, und M. Hunger, „Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods~“, Chemie Ingenieur Technik, Bd. 93, Nr. 6, Art. Nr. 6, Feb. 2021, doi: 10.1002/cite.202000128.
    12. M. König, S.-H. Lin, J. Vaes, D. Pant, und E. Klemm, „Integration of aprotic CO2 reduction to oxalate at a Pb catalyst into a GDE flow cell configuration“, Faraday Discuss., Bd. 230, Nr. 0, Art. Nr. 0, 2021, doi: 10.1039/D0FD00141D.
    13. J. Huang, M. Dyballa, D. Freude, Y. Jiang, und W. Wang, „The Journal of Physical Chemistry C Virtual Special Issue on Advanced Characterization by Solid-State NMR and In Situ Technology and in Recognition of Michael Hunger’s 65th Birthday“, The Journal of Physical Chemistry C, Bd. 125, Nr. 38, Art. Nr. 38, 2021, doi: 10.1021/acs.jpcc.1c07355.
    14. R. Himmelmann, E. Klemm, und M. Dyballa, „Improved ethanol dehydration catalysis by the superior acid properties of Cs-impregnated silicotungstic acid supported on silica“, Catal. Sci. Technol., Bd. 11, Nr. 9, Art. Nr. 9, 2021, doi: 10.1039/D1CY00143D.
    15. D. Geiß und Y. Traa, „The Ensemble Effect in Bifunctional Catalysis: Influence of Zinc as Promoter for Pd-H-ZSM-5 Catalysts during the Dehydroalkylation of Toluene with Ethane “, Chemie Ingenieur Technik, Bd. 93, Nr. 6, Art. Nr. 6, 2021, doi: https://doi.org/10.1002/cite.202000129.
    16. B. Gehring, Y. Traa, und M. Hunger, „Elucidation of the versatile Brønsted acidity of nanosized ZSM-5 materials“, Microporous and Mesoporous Materials, Bd. 317, S. 110978, Apr. 2021, doi: 10.1016/j.micromeso.2021.110978.
    17. B. J. M. Etzold, U. Krewer, S. Thiele, A. Dreizler, E. Klemm, und T. Turek, „Understanding the activity transport nexus in water and CO2 electrolysis: State of the art, challenges and perspectives“, Chemical Engineering Journal, Bd. 424, S. 130501, Nov. 2021, doi: 10.1016/j.cej.2021.130501.
    18. J. R. Bruckner, J. Bauhof, J. Gebhardt, A.-K. Beurer, Y. Traa, und F. Giesselmann, „Mechanisms and Intermediates in the True Liquid Crystal Templating Synthesis of Mesoporous Silica Materials“, The Journal of Physical Chemistry B, März 2021, doi: 10.1021/acs.jpcb.0c11005.
    19. F. Bienen u. a., „Degradation study on tin- and bismuth-based gas-diffusion electrodes during electrochemical CO2 reduction in highly alkaline media“, Journal of Energy Chemistry, Bd. 62, S. 367--376, Nov. 2021, doi: 10.1016/j.jechem.2021.03.050.
    20. F. Bienen, J. Hildebrand, D. Kopljar, N. Wagner, E. Klemm, und K. A. Friedrich, „Importance of Time-Dependent Wetting Behavior of Gas-Diffusion Electrodes for Reactivity Determination“, Chemie Ingenieur Technik, Bd. 93, Nr. 6, Art. Nr. 6, März 2021, doi: 10.1002/cite.202000192.
    21. A.-K. Beurer u. a., „Efficient and Spatially Controlled Functionalization of SBA-15 and Initial Results in Asymmetric Rh-Catalyzed 1,2-Additions under Confinement“, ChemCatChem, Bd. 13, Nr. 10, Art. Nr. 10, 2021, doi: https://doi.org/10.1002/cctc.202100229.
    22. A.-K. Beurer, J. R. Bruckner, und Y. Traa, „Influence of the Template Removal Method on the Mechanical Stability of SBA-15“, ChemistryOpen, Bd. 10, Nr. 11, Art. Nr. 11, Nov. 2021, doi: 10.1002/open.202100225.
    23. D. Bentele, K. Aylar, K. Olsen, E. Klemm, und S. H. Eberhardt, „PEMFC Anode Durability: Innovative Characterization Methods and Further Insights on OER Based Reversal Tolerance“, Journal of The Electrochemical Society, Bd. 168, Nr. 2, Art. Nr. 2, Feb. 2021, doi: 10.1149/1945-7111/abe50b.
  4. 2020

    1. Z. Li u. a., „Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials“, Adsorption, Okt. 2020, doi: 10.1007/s10450-020-00275-8.
    2. Kvande u. a., „Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol“, Catalysts, Bd. 10, Nr. 2, Art. Nr. 2, Feb. 2020, doi: 10.3390/catal10020191.
    3. M. Dyballa u. a., „Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports“, Microporous and Mesoporous Materials, S. 109778, Okt. 2020, doi: 10.1016/j.micromeso.2019.109778.
    4. S. Chen u. a., „Raising the COx Methanation Activity of a Ru/γ-Al2O3 Catalyst by Activated Modification of Metal–Support Interactions“, Angewandte Chemie International Edition, Bd. 59, Nr. 50, Art. Nr. 50, 2020, doi: https://doi.org/10.1002/anie.202007228.
    5. F. Bienen u. a., „Revealing Mechanistic Processes in Gas-Diffusion Electrodes During CO2 Reduction via Impedance Spectroscopy“, ACS Sustainable Chemistry & Engineering, Bd. 8, Nr. 36, Art. Nr. 36, Aug. 2020, doi: 10.1021/acssuschemeng.0c04451.
  5. 2019

    1. F. Ziegler u. a., „Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization“, Journal of the American Chemical Society, Bd. 141, Nr. 48, Art. Nr. 48, Nov. 2019, doi: 10.1021/jacs.9b08776.
    2. X. Zeng u. a., „Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity“, Journal of Catalysis, Bd. 380, S. 9--20, Dez. 2019, doi: 10.1016/j.jcat.2019.09.035.
    3. L. Yang u. a., „Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during Methanol Conversion“, ACS Catalysis, Bd. 9, Nr. 7, Art. Nr. 7, Juni 2019, doi: 10.1021/acscatal.9b00641.
    4. T. Yan u. a., „Cascade Conversion of Acetic Acid to Isobutene over Yttrium-Modified Siliceous Beta Zeolites“, ACS Catalysis, Bd. 9, Nr. 11, Art. Nr. 11, Sep. 2019, doi: 10.1021/acscatal.9b02850.
    5. Z. Wang u. a., „High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina“, Science Bulletin, Bd. 64, Nr. 8, Art. Nr. 8, Apr. 2019, doi: 10.1016/j.scib.2019.04.002.
    6. Z. Wang u. a., „Strongly enhanced acidity and activity of amorphous silica–alumina by formation of pentacoordinated AlV species“, Journal of Catalysis, Bd. 372, S. 1--7, Apr. 2019, doi: 10.1016/j.jcat.2019.02.007.
    7. R. Rachwalik, K. Góra-Marek, Z. Olejniczak, M. Hunger, und B. Sulikowski, „Tailoring selectivity in the liquid-phase isomerization of $\upalpha$-pinene on dealuminated ferrierite-type zeolites“, Catalysis Today, März 2019, doi: 10.1016/j.cattod.2019.03.045.
    8. D. K. Pappas u. a., „Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy“, Topics in Catalysis, Bd. 62, Nr. 7, Art. Nr. 7, Aug. 2019, doi: 10.1007/s11244-019-01160-7.
    9. D. Mack, S. Schätzle, Y. Traa, und E. Klemm, „Synthesis of Acrylonitrile from Renewable Lactic Acid“, ChemSusChem, Bd. 12, Nr. 8, Art. Nr. 8, 2019.
    10. K. A. Lomachenko u. a., „The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study“, Catalysis Today, Bd. 336, S. 99--108, Okt. 2019, doi: 10.1016/j.cattod.2019.01.040.
    11. K. D. Kim, Z. Wang, Y. Jiang, M. Hunger, und J. Huang, „The cooperative effect of Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the conversion of 1,3-dihydroxyacetone to ethyl lactate“, Green Chem., Bd. 21, Nr. 12, Art. Nr. 12, 2019, doi: 10.1039/C9GC00820A.
    12. M. Gackowski, J. Podobiński, und M. Hunger, „Evidence for a strong polarization of n-hexane in zeolite H-ZSM-5 by FT-IR and solid-state NMR spectroscopy“, Microporous and Mesoporous Materials, Bd. 273, S. 67--72, Jan. 2019, doi: 10.1016/j.micromeso.2018.06.054.
    13. P. Eversfield, T. Lange, M. Hunger, und E. Klemm, „Selective oxidation of o-xylene to phthalic anhydride on tungsten, tin, and potassium promoted VOx on TiO2 monolayer catalysts“, Catalysis Today, Bd. 333, S. 120--126, Aug. 2019, doi: 10.1016/j.cattod.2018.04.025.
    14. M. Dyballa u. a., „Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol“, ChemCatChem, Bd. 11, Nr. 20, Art. Nr. 20, Sep. 2019, doi: 10.1002/cctc.201901315.
    15. M. Dyballa u. a., „On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion“, ACS Catalysis, Bd. 9, Nr. 1, Art. Nr. 1, Dez. 2019, doi: 10.1021/acscatal.8b04437.
    16. R. Y. Brogaard u. a., „Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site“, ACS Catalysis, Bd. 9, Nr. 6, Art. Nr. 6, Mai 2019, doi: 10.1021/acscatal.9b00721.
    17. E. Borfecchia u. a., „Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS“, Catalysis Today, Bd. 333, S. 17--27, Aug. 2019, doi: 10.1016/j.cattod.2018.07.028.
    18. F. Bienen u. a., „Utilizing Formate as an Energy Carrier by Coupling CO2 Electrolysis with Fuel Cell Devices“, Chemie Ingenieur Technik, Bd. 91, Nr. 6, Art. Nr. 6, Mai 2019, doi: 10.1002/cite.201800212.
    19. D. Beierlein u. a., „Is the CO2 methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive?“, Applied Catalysis B: Environmental, Bd. 247, S. 200--219, Juni 2019, doi: 10.1016/j.apcatb.2018.12.064.
  6. 2018

    1. E. Yuan, W. Dai, G. Wu, N. Guan, M. Hunger, und L. Li, „Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts“, Microporous and Mesoporous Materials, Bd. 270, S. 265--273, Nov. 2018, doi: 10.1016/j.micromeso.2018.05.032.
    2. T. Yan u. a., „On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion“, Journal of Catalysis, Bd. 367, S. 7--15, Nov. 2018, doi: 10.1016/j.jcat.2018.08.019.
    3. T. Yan u. a., „Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite“, ACS Catalysis, Bd. 8, Nr. 4, Art. Nr. 4, Feb. 2018, doi: 10.1021/acscatal.8b00014.
    4. Z. Wang u. a., „Acidity enhanced AlMCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to \varepsilon-caprolactam“, Journal of Catalysis, Bd. 358, S. 71--79, Feb. 2018, doi: 10.1016/j.jcat.2017.11.013.
    5. Z. Wang u. a., „Identification of Vicinal Silanols and Promotion of Their Formation on MCM-41 via Ultrasonic Assisted One-Step Room-Temperature Synthesis for Beckmann Rearrangement“, Industrial & Engineering Chemistry Research, Bd. 57, Nr. 16, Art. Nr. 16, Apr. 2018, doi: 10.1021/acs.iecr.8b00274.
    6. X. H. Vu, M. Hunger, U. Armbruster, und A. Martin, „Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors“, Journal of Porous Materials, Bd. 25, Nr. 4, Art. Nr. 4, Aug. 2018, doi: 10.1007/s10934-017-0514-y.
    7. D. K. Pappas u. a., „The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment“, Journal of the American Chemical Society, Bd. 140, Nr. 45, Art. Nr. 45, Okt. 2018, doi: 10.1021/jacs.8b08071.
    8. D. K. Pappas u. a., „Understanding and Optimizing the Performance of Cu-FER for The Direct CH4 to CH3OH Conversion“, ChemCatChem, Bd. 11, Nr. 1, Art. Nr. 1, Dez. 2018, doi: 10.1002/cctc.201801542.
    9. Md. A. Hossain, J. Jewaratnam, A. Ramalingam, J. N. Sahu, und P. Ganesan, „A DFT method analysis for formation of hydrogen rich gas from acetic acid by steam reforming process“, FUEL, Bd. 212, S. 49–60, Jan. 2018, doi: 10.1016/j.fuel.2017.09.098.
    10. J. Holzinger u. a., „Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study“, The Journal of Physical Chemistry C, Bd. 123, Nr. 13, Art. Nr. 13, Nov. 2018, doi: 10.1021/acs.jpcc.8b06891.
    11. M. Heuchel, C. Dörr, R. Boldushevskii, S. Lang, E. Klemm, und Y. Traa, „The influence of porosity and active sites of zeolites Y and beta on the co-cracking of n-decane and 2-ethylphenol“, Applied catalysis. A, General, Bd. 553, S. 91–106, 2018, doi: 10.1016/j.apcata.2017.11.026.
    12. P. Hermann u. a., „Optimization of a split and recombine micromixer by improved exploitation of secondary flows“, CHEMICAL ENGINEERING JOURNAL, Bd. 334, S. 1996–2003, Feb. 2018, doi: 10.1016/j.cej.2017.11.131.
    13. P. M. Hauser, M. Hunger, und M. R. Buchmeiser, „Silica-Supported Molybdenum Alkylidyne N-Heterocyclic Carbene Catalysts:    Relevance of Site Isolation to Catalytic Performance“, CHEMCATCHEM, Bd. 10, Nr. 8, SI, Art. Nr. 8, SI, Apr. 2018, doi: 10.1002/cctc.201701654.
    14. M. Dyballa u. a., „Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane“, Microporous and Mesoporous Materials, Bd. 265, S. 112--122, Juli 2018, doi: 10.1016/j.micromeso.2018.02.004.
    15. M. Dyballa, U. Obenaus, M. Blum, und W. Dai, „Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance“, CATALYSIS SCIENCE & TECHNOLOGY, Bd. 8, Nr. 17, Art. Nr. 17, Sep. 2018, doi: 10.1039/c8cy01032c.
    16. S. R. Docherty, D. P. Estes, und C. Copéret, „Facile Synthesis of Unsymmetrical Trialkoxysilanols: (RO)2(R′O)SiOH“, Helv. Chim. Acta, Bd. 101, Nr. e1700298, Art. Nr. e1700298, 2018, doi: 10.1002/hlca.201700298.
    17. W. Dai u. a., „Effect of n-Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic Interpretation“, ACS CATALYSIS, Bd. 8, Nr. 2, Art. Nr. 2, Feb. 2018, doi: 10.1021/acscatal.7b03457.
    18. D. Beierlein, S. Schirrmeister, Y. Traa, und E. Klemm, „Experimental approach for identifying hotspots in lab-scale fixed-bed reactors exemplified by the Sabatier reaction“, Reaction kinetics and catalysis letters, 2018, doi: 10.1007/s11144-018-1402-4.
  7. 2017

    1. H. Zuo, V. Meynen, und E. Klemm, „Selective oxidation of methane with hydrogen peroxide towards formic acid in a micro fixed-bed reactor“, Chemie Ingenieur Technik, Bd. 89, Nr. 12, Art. Nr. 12, 2017, doi: 10.1002/cite.201600174.
    2. U. Tastan, F. Guba, und D. Ziegenbalg, „Switchable Reactions for the Investigation of Reactive Mass Transfer Processes“, CHEMICAL ENGINEERING & TECHNOLOGY, Bd. 40, Nr. 8, SI, Art. Nr. 8, SI, Aug. 2017, doi: 10.1002/ceat.201600586.
    3. S. Shams, J. N. Sahu, S. M. S. Rahman, und A. Ahsan, „Sustainable waste management policy in Bangladesh for reduction of greenhouse gases“, SUSTAINABLE CITIES AND SOCIETY, Bd. 33, S. 18–26, Aug. 2017, doi: 10.1016/j.scs.2017.05.008.
    4. K. Sato und M. Hunger, „Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration“, PHYSICAL CHEMISTRY CHEMICAL PHYSICS, Bd. 19, Nr. 28, Art. Nr. 28, Juli 2017, doi: 10.1039/c7cp02814h.
    5. K. Sato und M. Hunger, „Molecular studies of Cs adsorption sites in inorganic layered materials“, ChemPhysChem, Bd. 19, Nr. 28, Art. Nr. 28, 2017, doi: 10.1039/C7CP02814H.
    6. D. Rojo-Gama u. a., „A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5“, ACS Catalysis, Bd. 7, Nr. 12, Art. Nr. 12, Nov. 2017, doi: 10.1021/acscatal.7b02193.
    7. D. K. Pappas u. a., „Methane to Methanol: Structure–Activity Relationships for Cu-CHA“, Journal of the American Chemical Society, Bd. 139, Nr. 42, Art. Nr. 42, Okt. 2017, doi: 10.1021/jacs.7b06472.
    8. U. Obenaus, S. Lang, R. Himmelmann, und M. Hunger, „Parahydrogen-induced hyperpolarization inside meso- and micropores of Pt-, Rh-, Ir-, and Pd-containing solid catalysts“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 121, Nr. 18, Art. Nr. 18, 2017, doi: 10.1021/acs.jpcc.7b01899.
    9. U. Obenaus, G. Althoff-Ospelt, S. Lang, R. Himmelmann, und M. Hunger, „Separation of anti-phase signals due to para-hydrogen induced polarization via 2D nutation NMR spectroscopy“, ChemPhysChem, Bd. 18, Nr. 5, Art. Nr. 5, 2017, doi: 10.1002/cphc.201601227.
    10. T. Montsch, M. Heuchel, Y. Traa, E. Klemm, und C. Stubenrauch, „Selective hydrogenation of 3-Hexyn-1-ol with Pd nanoparticles synthesized via microemulsions“, Applied catalysis. A, General, Bd. 539, S. 19–28, 2017, doi: 10.1016/j.apcata.2017.03.038.
    11. K. Latendorf, M. Mechler, I. Schamne, D. Mack, W. Frey, und R. Peters, „Titanium Salen Complexes with Appended Silver NHC Groups as Nucleophilic Carbene Reservoir for Cooperative Asymmetric Lewis Acid/NHC Catalysis“, EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Nr. 28, Art. Nr. 28, Aug. 2017, doi: 10.1002/ejoc.201700436.
    12. S. Lang u. a., „Mechanisms of the AlCl3 Modification of Siliceous Microporous and Mesoporous Catalysts Investigated by Multi-Nuclear Solid-State NMR“, Topics in Catalysis, Bd. 60, Nr. 19, Art. Nr. 19, Dez. 2017, doi: 10.1007/s11244-017-0837-6.
    13. H. Koller, T. Uesbeck, M. R. Hansen, und M. Hunger, „Characterizing the First and Second Al-27 Neighbors of Bronsted and Lewis Acid Protons in Zeolites and the Distribution of Al-27 Quadrupolar Couplings by H-1\Al-27\ Offset REAPDOR“, JOURNAL OF PHYSICAL CHEMISTRY C, Bd. 121, Nr. 46, Art. Nr. 46, Nov. 2017, doi: 10.1021/acs.jpcc.7b09544.
    14. H. Koller, T. Uesbeck, M. R. Hansen, und M. Hunger, „Characterizing the First and Second 27Al Neighbors of Brønsted and Lewis Acid Protons in Zeolites and the Distribution of 27Al Quadrupolar Couplings by 1H$łbrace$27Al$\rbrace$ Offset REAPDOR“, The Journal of Physical Chemistry C, Bd. 121, Nr. 46, Art. Nr. 46, Nov. 2017, doi: 10.1021/acs.jpcc.7b09544.
    15. E. Klemm, M. Kraume, J. Ritter, und J. Sauer, „Reaktionstechnik und Mischvorgänge : zwei untrennbare Fachgebiete“, Chemie - Ingenieur - Technik, Bd. 89, Nr. 4, Art. Nr. 4, 2017, doi: 10.1002/cite.201770042.
    16. E. Klemm, M. Kraume, J. Ritter, und J. Sauer, „Reaction Technology and Mixing Processes: two indivisible Specialist Areas“, CHEMIE INGENIEUR TECHNIK, Bd. 89, Nr. 4, SI, Art. Nr. 4, SI, Apr. 2017, doi: 10.1002/cite.201770042.
    17. R. R. Karri, J. N. Sahu, und N. S. Jayakumar, „Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and  non-linear methods“, JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, Bd. 80, S. 472–487, Nov. 2017, doi: 10.1016/j.jtice.2017.08.004.
    18. R. R. Karri, N. S. Jayakumar, und J. N. Sahu, „Modelling of fluidised-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon“, JOURNAL OF MOLECULAR LIQUIDS, Bd. 231, S. 249–262, Apr. 2017, doi: 10.1016/j.molliq.2017.02.003.
    19. M. Heuchel, F. Reinhardt, N. Merdanoglu, E. Klemm, und Y. Traa, „Co-catalytic cracking of n-decane and 2-ethylphenol over a variety of deactivated zeolites for the conversion of fossil- and bio-based feeds in Co-FCC“, Microporous and mesoporous materials, Bd. 254, S. 59–68, 2017, doi: 10.1016/j.micromeso.2017.05.005.
    20. P. D. Hermann, T. Cents, E. Klemm, und D. Ziegenbalg, „Determination of the kinetics of the ethoxylation of octanol in homogeneous phase“, Industrial & engineering chemistry research, Bd. 56, Nr. 21, Art. Nr. 21, 2017, doi: 10.1021/acs.iecr.7b00948.
    21. A. J. R. Hensley u. a., „DFT-Based Method for More Accurate Adsorption Energies: An Adaptive Sum of Energies from RPBE and vdW Density Functionals“, The Journal of Physical Chemistry C, Bd. 121, Nr. 9, Art. Nr. 9, Feb. 2017, doi: 10.1021/acs.jpcc.6b10187.
    22. E. von Harbou, O. Wachsen, E. Klemm, und C. Dreiser, „Technische Chemie 2016“, Nachrichten aus der Chemie, Bd. 65, Nr. 3, Art. Nr. 3, 2017, doi: 10.1002/nadc.20174057518.
    23. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, und C. Jäger, „Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites“, Ceramics International, Bd. 43, Nr. 2, Art. Nr. 2, Feb. 2017, doi: 10.1016/j.ceramint.2016.11.004.
    24. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, und L. C. Jaeger, „Differentiation of gel, zeolites and various water species in geopolymer-zeolite composites“, Ceramics international, Bd. 43, Nr. 2, Art. Nr. 2, 2017, doi: 10.1016/j.ceramint.2016.11.004.
    25. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, und C. Jaeger, „Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites“, CERAMICS INTERNATIONAL, Bd. 43, Nr. 2, Art. Nr. 2, Feb. 2017, doi: 10.1016/j.ceramint.2016.11.004.
    26. P. Eversfield, W. Liu, und E. Klemm, „Effect of potassium on the physicochemical and catalytic characteristics of V2O5/TiO2 catalysts in o-xylene partial oxidation to phthalic anhydride“, Catalysis letters, Bd. 147, Nr. 3, Art. Nr. 3, 2017, doi: 10.1007/s10562-017-1972-1.
    27. P. Eversfield, W. Liu, und E. Klemm, „Effect of Potassium on the Physiochemical and Catalytic Characteristics    of V2O5/TiO2 Catalysts in o-Xylene Partial Oxidation to Phthalic    Anhydride“, CATALYSIS LETTERS, Bd. 147, Nr. 3, Art. Nr. 3, März 2017, doi: 10.1007/s10562-017-1972-1.
    28. DevenP. Estes, „Mechanistic Investigations of C–H Activations on Silica-Supported Co(ii) Sites in Catalytic Propane Dehydrogenation“, CHIMIA International Journal for Chemistry, Bd. 71, Nr. 4, Art. Nr. 4, Apr. 2017, doi: 10.2533/chimia.2017.177.
    29. D. P. Estes u. a., „Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis“, Journal of the American Chemical Society, Bd. 139, Nr. 48, Art. Nr. 48, Nov. 2017, doi: 10.1021/jacs.7b09934.
    30. D. P. Estes, A. K. Cook, E. Lam, L. Wong, und C. Copéret, „Understanding the Lewis Acidity of Co(II) Sites on a Silica Surface“, Inorganic Chemistry, Bd. 56, Nr. 14, Art. Nr. 14, Juli 2017, doi: 10.1021/acs.inorgchem.7b00443.
    31. G. Emig und E. Klemm, Chemische Reaktionstechnik, 6. Aufl. in Springer-Lehrbuch. Berlin: Springer Vieweg, 2017. doi: 10.1007/978-3-662-49268-0.
    32. W. Dai u. a., „Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density“, Catal. Sci. Technol., Bd. 7, Nr. 3, Art. Nr. 3, 2017, doi: 10.1039/C6CY02564A.
  8. 2016

    1. S. C. C. Wiedemann u. a., „Large Ferrierite Crystals as Models for Catalyst Deactivation during    Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis“, CHEMISTRY-A EUROPEAN JOURNAL, Bd. 22, Nr. 1, Art. Nr. 1, Jan. 2016, doi: 10.1002/chem.201503551.
    2. M. Wichert, R. Zapf, A. Ziogas, G. Kolb, und E. Klemm, „Kinetic investigations of the steam reforming of methanol over a    Pt/In2O3/Al2O3 catalyst in microchannels“, CHEMICAL ENGINEERING SCIENCE, Bd. 155, S. 201–209, Nov. 2016, doi: 10.1016/j.ces.2016.08.009.
    3. Ü. Tastan und D. Ziegenbalg, „Getting the Most out of Solar Irradiation: Efficient Use of    Polychromatic Light for Water Splitting“, CHEMISTRY-A EUROPEAN JOURNAL, Bd. 22, Nr. 52, Art. Nr. 52, Dez. 2016, doi: 10.1002/chem.201602709.
    4. K. Sato, K. Fujimoto, W. Dai, und M. Hunger, „Quantitative Elucidation of Cs Adsorption Sites in Clays: Toward    Sophisticated Decontamination of Radioactive Cs“, JOURNAL OF PHYSICAL CHEMISTRY C, Bd. 120, Nr. 2, Art. Nr. 2, Jan. 2016, doi: 10.1021/acs.jpcc.5b09350.
    5. R. Otterstaetter, H.-W. Zanthoff, und E. Klemm, „Three-Phase Heterogeneously Catalyzed Oxidative Esterification -    Relevance of Oxygen Mass Transport“, CHEMICAL ENGINEERING & TECHNOLOGY, Bd. 39, Nr. 11, SI, Art. Nr. 11, SI, Nov. 2016, doi: 10.1002/ceat.201600184.
    6. U. Obenaus, F. Neher, M. Scheibe, M. Dyballa, S. Lang, und M. Hunger, „Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis“, The Journal of Physical Chemistry C, Bd. 120, Nr. 4, Art. Nr. 4, Jan. 2016, doi: 10.1021/acs.jpcc.5b11367.
    7. U. Obenaus, S. Lang, und M. Hunger, „Relationships between the hydrogenation and dehydrogenation properties of Rh,- Ir-, Pd-, and Pt-containing zeolites Y“, gehalten auf der Developments and Applications of Solid State NMR Conference, 2016.
    8. A. Löwe, M. Trautmann, C. Ndibe, J. Maier, G. Scheffknecht, und Y. Traa, „Direct liquefaction of biocoals and similar biomass reactants“, in Beiträge zur DGMK-Fachbereichstagung „Konversion von Biomassen und Kohlen“, 9.-11. Mai 2016 in Rotenburg a.d. Fulda, in Beiträge zur DGMK-Fachbereichstagung „Konversion von Biomassen und Kohlen“, 9.-11. Mai 2016 in Rotenburg a.d. Fulda. DGMK, 2016.
    9. S. Lang und M. Hunger, „Modification of Co-FCC catalysts and their characterization by solid-state NMR spectroscopy“, gehalten auf der Annual FASTCARD Meeting, 2016.
    10. S. Lang, M. Benz, U. Obenaus, R. Himmelmann, und M. Hunger, „Novel Approach for the Characterization of Lewis Acidic Solid Catalysts    by Solid-State NMR Spectroscopy“, CHEMCATCHEM, Bd. 8, Nr. 12, Art. Nr. 12, Juni 2016, doi: 10.1002/cctc.201600372.
    11. D. Kopljar, N. Wagner, und E. Klemm, „Transferring Electrochemical CO2 Reduction from Semi-Batch into    Continuous Operation Mode Using Gas Diffusion Electrodes“, CHEMICAL ENGINEERING & TECHNOLOGY, Bd. 39, Nr. 11, SI, Art. Nr. 11, SI, Nov. 2016, doi: 10.1002/ceat.201600198.
    12. H. Koller u. a., „Post-Synthesis Conversion of Borosilicate Zeolite Beta to an    Aluminosilicate with Isolated Acid Sites: A Quantitative Distance    Analysis by Solid-State NMR“, JOURNAL OF PHYSICAL CHEMISTRY C, Bd. 120, Nr. 18, Art. Nr. 18, Mai 2016, doi: 10.1021/acs.jpcc.6b01680.
    13. K. D. Kim u. a., „Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation    Reactions via Optimizing the Parameters of the Double-Flame Spray    Pyrolysis“, ACS CATALYSIS, Bd. 6, Nr. 4, Art. Nr. 4, Apr. 2016, doi: 10.1021/acscatal.6b00396.
    14. K. D. Kim u. a., „Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation Reactions via Optimizing the Parameters of the Double-Flame Spray Pyrolysis“, ACS Catalysis, Bd. 6, Nr. 4, Art. Nr. 4, März 2016, doi: 10.1021/acscatal.6b00396.
    15. Y. Hu, A. P. Shaw, D. P. Estes, und J. R. Norton, „Transition-Metal Hydride Radical Cations“, Chemical Reviews, Bd. 116, Nr. 15, Art. Nr. 15, Feb. 2016, doi: 10.1021/acs.chemrev.5b00532.
    16. P. D. Hermann, T. Cents, E. Klemm, und D. Ziegenbalg, „Simulation Study of the Ethoxylation of Octanol in a Microstructured    Reactor“, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, Bd. 55, Nr. 49, Art. Nr. 49, Dez. 2016, doi: 10.1021/acs.iecr.6b04110.
    17. S. Greiser, M. Hunger, und C. Jaeger, „Si-29\Al-27\ TRAPDOR MAS NMR to distinguish Q(n)(mAl) sites in    aluminosilicates. Test case: Faujasite-type zeolites“, SOLID STATE NUCLEAR MAGNETIC RESONANCE, Bd. 79, S. 6–10, Okt. 2016, doi: 10.1016/j.ssnmr.2016.10.004.
    18. S. Greiser, M. Hunger, und C. Jäger, „29Si27Al TRAPDOR MAS NMR to distinguish Qn(mAl) sites in aluminosilicates. Test case: Faujasite-type zeolites“, Solid State Nuclear Magnetic Resonance, Bd. 79, S. 6--10, Okt. 2016, doi: 10.1016/j.ssnmr.2016.10.004.
    19. D. P. Estes u. a., „C–H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs“, Journal of the American Chemical Society, Bd. 138, Nr. 45, Art. Nr. 45, Nov. 2016, doi: 10.1021/jacs.6b08705.
    20. M. Dyballa u. a., „Post-synthetic improvement of H-ZSM-22 zeolites for the    methanol-to-olefin conversion“, MICROPOROUS AND MESOPOROUS MATERIALS, Bd. 233, S. 26–30, Okt. 2016, doi: 10.1016/j.micromeso.2016.06.044.
    21. M. Dyballa u. a., „Parameters influencing the selectivity to propene in the MTO conversion    on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and    ZSM-22“, APPLIED CATALYSIS A-GENERAL, Bd. 510, S. 233–243, Jan. 2016, doi: 10.1016/j.apcata.2015.11.017.
    22. M. F. Delley u. a., „X–H Bond Activation on Cr(III),O Sites (X = R, H): Key Steps in Dehydrogenation and Hydrogenation Processes“, Organometallics, Bd. 36, Nr. 1, Art. Nr. 1, Nov. 2016, doi: 10.1021/acs.organomet.6b00744.
    23. W. Dai u. a., „Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides“, ACS catalysis, Bd. 6, Nr. 5, Art. Nr. 5, 2016, doi: 10.1021/acscatal.5b02823.
    24. C. Copéret, D. P. Estes, K. Larmier, und K. Searles, „Isolated Surface Hydrides: Formation, Structure, and Reactivity“, Chemical Reviews, Bd. 116, Nr. 15, Art. Nr. 15, Juli 2016, doi: 10.1021/acs.chemrev.6b00082.
    25. C. Copéret u. a., „Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities“, Chemical Reviews, Bd. 116, Nr. 2, Art. Nr. 2, Jan. 2016, doi: 10.1021/acs.chemrev.5b00373.
    26. E. Balcazar, F. Neher, C. Liebner, H. Hieronymus, und E. Klemm, „Determination of ignition temperature in micro reactors“, Chemical engineering transactions, Bd. 48, S. 547–552, 2016, doi: 10.3303/CET1648092.
    27. M. Aimer, E. Klemm, B. Langanke, H. Gehrke, und C. Stubenrauch, „Reactive Extraction of Lactic Acid by Using Tri-n-octylamine: Structure    of the Ionic Phase“, CHEMISTRY-A EUROPEAN JOURNAL, Bd. 22, Nr. 10, Art. Nr. 10, März 2016, doi: 10.1002/chem.201503799.
  9. 2015

    1. D. Ziegenbalg, B. Wriedt, G. Kreisel, und D. Kralisch, „Investigation of photon fluxes within microstructured photoreactors revealing great optimization potentials“, Chemical engineering & technology, Bd. 39, Nr. 123–134, Art. Nr. 123–134, 2015, doi: 10.1002/ceat.201500498.
    2. Z. Wang u. a., „Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone“, Catal. Sci. Technol., Bd. 5, Nr. 5, Art. Nr. 5, 2015, doi: 10.1039/C5CY00214A.
    3. M. Trautmann, S. Lang, und Y. Traa, „Direct liquefaction of lower-rank coals and biocoals with magnetically    separable catalysts as a sustainable route to fuels“, FUEL, Bd. 151, S. 102–109, Juli 2015, doi: 10.1016/j.fuel.2015.01.006.
    4. T. Titze u. a., „Microimaging transienter Konzentrationsprofile von Raktant- und Produktmolekülen während einer katalytischen Umwandlung in nanoporösen Materialien“, Angewandte Chemie, Bd. 127, Nr. 17, Art. Nr. 17, 2015, doi: 10.1002/ange.201409482.
    5. T. Titze u. a., „Microimaging of Transient Concentration Profiles of Reactant and Product    Molecules during Catalytic Conversion in Nanoporous Materials“, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Bd. 54, Nr. 17, Art. Nr. 17, Apr. 2015, doi: 10.1002/anie.201409482.
    6. Ü. Tastan und D. Ziegenbalg, „Rapid prototyping for fast and easy optimization of microstructured photoreactors“, gehalten auf der ACHEMA 2015, 2015.
    7. B. Tang u. a., „Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application“, Chinese Journal of Catalysis, Bd. 36, Nr. 6, Art. Nr. 6, Juni 2015, doi: 10.1016/s1872-2067(14)60277-1.
    8. B. Tang u. a., „Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides“, Green Chem., Bd. 17, Nr. 3, Art. Nr. 3, 2015, doi: 10.1039/C4GC02116A.
    9. X. Sun, W. Dai, G. Wu, L. Li, N. Guan, und M. Hunger, „Evidence of rutile-to-anatase photo-induced electron transfer in    mixed-phase TiO2 by solid-state NMR spectroscopy“, CHEMICAL COMMUNICATIONS, Bd. 51, Nr. 72, Art. Nr. 72, 2015, doi: 10.1039/c5cc04971g.
    10. S. Sen, R. Schowner, D. A. Imbrich, W. Frey, M. Hunger, und M. R. Buchmeiser, „Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene    Complexes: Reactivity in Selected Olefin Metathesis Reactions and    Immobilization on Silica“, CHEMISTRY-A EUROPEAN JOURNAL, Bd. 21, Nr. 39, Art. Nr. 39, Sep. 2015, doi: 10.1002/chem.201501615.
    11. J. Sauer und E. Klemm, „Neue Aufgaben für die Reaktionstechnik“, Chemie - Ingenieur - Technik, Bd. 87, Nr. 6, Art. Nr. 6, 2015, doi: 10.1002/cite.201590035.
    12. J. Sauer und E. Klemm, „New Tasks for the Reaction Technique“, CHEMIE INGENIEUR TECHNIK, Bd. 87, Nr. 6, SI, Art. Nr. 6, SI, Juni 2015, doi: 10.1002/cite.201590035.
    13. U. Obenaus, S. Lang, und M. Hunger, „Brønsted acidity of noble metal-containing zeolite catalysts studied by solid-state NMR upon adsorption of probe molecules“, gehalten auf der 48. Jahrestreffen Deutscher Katalytiker, 2015. [Online]. Verfügbar unter: /brokenurl#129.69.96.39/hunger/bilder/Poster_Obenaus_2015_4.pdf
    14. U. Obenaus, M. Dyballa, S. Lang, M. Scheibe, und M. Hunger, „Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy“, The Journal of Physical Chemistry C, Bd. 119, Nr. 27, Art. Nr. 27, Juni 2015, doi: 10.1021/acs.jpcc.5b03149.
    15. G. Näfe u. a., „Deactivation behavior of alkali-metal zeolites in the dehydration of    lactic acid to acrylic acid“, JOURNAL OF CATALYSIS, Bd. 329, S. 413–424, Sep. 2015, doi: 10.1016/j.jcat.2015.05.017.
    16. L. T. H. Nam, T. Q. Vinh, N. D. Hoa, und M. Hunger, „Synthesis and characterisation of ZSM-5/SBA-15 composite material“, INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, Bd. 12, Nr. 5–7, Art. Nr. 5–7, 2015, doi: 10.1504/IJNT.2015.067904.
    17. M. Nagel u. a., „Impact of bacterial endotoxin on the structure of DMPC membranes“, BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, Bd. 1848, Nr. 10, A, Art. Nr. 10, A, Okt. 2015, doi: 10.1016/j.bbamem.2015.06.008.
    18. D. Kopljar u. a., „Entwicklung und Einsatz von Gasdiffusionselektroden zur elektrochemischen Reduktion von CO2“, Chemie - Ingenieur - Technik, Bd. 87, Nr. 6, Art. Nr. 6, 2015, doi: 10.1002/cite.201400135.
    19. D. Kopljar u. a., „Development and Utilization of Gas Diffusion Electrodes for the    Electrochemical Reduction of CO2“, CHEMIE INGENIEUR TECHNIK, Bd. 87, Nr. 6, SI, Art. Nr. 6, SI, Juni 2015, doi: 10.1002/cite.201400135.
    20. Y. Jiang, J. Huang, M. Hunger, M. Maciejewski, und A. Baiker, „Comparative studies on the catalytic activity and structure of a Cu-MOF    and its precursor for alcoholysis of cyclohexene oxide“, CATALYSIS SCIENCE & TECHNOLOGY, Bd. 5, Nr. 2, Art. Nr. 2, 2015, doi: 10.1039/c4cy00916a.
    21. L. T. Hoai Nam, T. Quang Vinh, N. Duc Hoa, und M. Hunger, „Synthesis and characterization of ZSM-5/SBA-15 composite material“, International journal of nanotechnology, Bd. 12, Nr. 5–7, Art. Nr. 5–7, 2015, doi: 10.1504/IJNT.2015.067904.
    22. D. P. Estes und C. Copéret, „The Role of Proton Transfer in Heterogeneous Transformations of Hydrocarbons“, CHIMIA International Journal for Chemistry, Bd. 69, Nr. 6, Art. Nr. 6, Juni 2015, doi: 10.2533/chimia.2015.321.
    23. M. Dyballa u. a., „Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange“, Microporous and Mesoporous Materials, Bd. 212, S. 110--116, Aug. 2015, doi: 10.1016/j.micromeso.2015.03.030.
    24. W. Dai u. a., „Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from    NMR Spectroscopy and DFT Calculations“, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Bd. 54, Nr. 30, Art. Nr. 30, Juli 2015, doi: 10.1002/anie.201502748.
    25. W. Dai u. a., „Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34“, ACS Catalysis, Bd. 5, Nr. 1, Art. Nr. 1, Dez. 2015, doi: 10.1021/cs5015749.
    26. W. Dai, M. Dyballa, G. Wu, L. Li, N. Guan, und M. Hunger, „Intermediates and Dominating Reaction Mechanism During the Early Period    of the Methanol-to-Olefin Conversion on SAPO-41“, JOURNAL OF PHYSICAL CHEMISTRY C, Bd. 119, Nr. 5, Art. Nr. 5, Feb. 2015, doi: 10.1021/jp5118757.
  10. 2014

    1. Z. Wang, Y. Jiang, M. Hunger, A. Baiker, und J. Huang, „Catalytic performance of Bronsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica-zirconia“, Bd. 6, Nr. 10, Art. Nr. 10, 2014, doi: 10.1002/cctc.201402397.
    2. Z. Wang, L. Wang, Y. Jiang, M. Hunger, und J. Huang, „The cooperativity of Bronsted and Lewis acid sites on zeolite for glycerol dehydration“, Bd. 4, S. 1144–1147, 2014.
    3. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, und M. Hunger, „Verifying the dominant catalytic cycle of the methanol-to-hydrocarbon conversion over SAPO-41“, Bd. 2014, Nr. 4, Art. Nr. 4, 2014, doi: 10.1039/C3CY00740E.
    4. D. Wan Hussin und Y. Traa, „Production of high-octane fuel components by dehydroalkylation of benzene with mixtures of ethane and propane“, Energy & fuels, Bd. 28, Nr. 5, Art. Nr. 5, 2014, doi: 10.1021/ef500333b.
    5. X. H. Vu, U. Bentrup, M. Hunger, R. Kraehnert, U. Armbruster, und A. Martin, „Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst“, Journal of materials science, Bd. 49, Nr. 16, Art. Nr. 16, 2014, doi: 10.1007/s10853-014-8287-z.
    6. M. Trautmann, A. Löwe, und Y. Traa, „An alternative method for the production of second-generation biofuels“, Bd. 16, S. 3710–3714, 2014, doi: 10.1039/C4GC00649F.
    7. B. Tang, W. Dai, G. Wu, N. Guan, L. Li, und M. Hunger, „Improved post-synthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-open hydration of epoxides“, Bd. 4, S. 2801–2810, 2014.
    8. X. Sun, M. Dyballa, J. Yan, L. Li, N. Guan, und M. Hunger, „Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2“, Bd. 94, S. 34–40, 2014, doi: 10.1016/j.cplett.2014.01.014.
    9. J. Sauer und E. Klemm, „Reaktionstechnik - von den Grundlagen zu industriellen Anwendungen“, Chemie - Ingenieur - Technik, Bd. 86, Nr. 4, Art. Nr. 4, 2014, doi: 10.1002/cite.201490022.
    10. K. Sato, W. Numata, K. nd Dai, und M. Hunger, „Tunable states of interlayer cations in two-dimensional materials“, Bd. 104, S. 131901, 2014, doi: 10.1063/1.4870006.
    11. K. Sato, K. Numata, W. Dai, und M. Hunger, „Long-term self-assembly of inorganic layered materials influenced by the local states of the interlayer cations“, Bd. 16, Nr. 22, Art. Nr. 22, 2014, doi: 10.1039/c4cp00990h.
    12. E. Roduner, Ch. Jensen, J. van Slageren, R. A. Rakozy, O. Larlus, und M. Hunger, „Anomalous diamagnetic susceptibility in 13-atom Pt nanocluster superatoms“, Bd. 53, S. 4318–4321, 2014.
    13. G. Näfe, Y. Traa, T. Hirth, und E. Klemm, „True catalytic behavior of lactic acid dehydration on zeolite Na-Y in the gas phase measured by means of a novel apparatus design“, Bd. 144, Nr. 7, Art. Nr. 7, 2014, doi: 10.1007/s10562-014-1270-0.
    14. G. Li, D. P. Estes, J. R. Norton, S. Ruccolo, A. Sattler, und W. Sattler, „Dihydrogen Activation by Cobaloximes with Various Axial Ligands“, Inorganic Chemistry, Bd. 53, Nr. 19, Art. Nr. 19, Sep. 2014, doi: 10.1021/ic501975r.
    15. T. Lange u. a., „Heterogeneous catalysis meets micro reactors“, in Preprints of the DGMK-Conference „Selective Oxidation and Functionalization, Classical and Alternative Routes and Sources“, in Preprints of the DGMK-Conference „Selective Oxidation and Functionalization, Classical and Alternative Routes and Sources“. DGMK, 2014, S. 97.
    16. J. Kärger u. a., „Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials“, Bd. 13, S. 333–343, 2014, doi: 10.1038/nmat3917.
    17. D. Kopljar, A. Inan, P. Vindayer, N. Wagner, und E. Klemm, „Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes“, Bd. 44, Nr. 10, Art. Nr. 10, 2014, doi: 10.1007/s10800-014-0731-x.
    18. E. Klemm und K. Wagemann, „Technische Chemie - ein unverzichtbarer Brückenkopf“, Chemie - Ingenieur - Technik, Bd. 86, Nr. 11, Art. Nr. 11, 2014, doi: 10.1002/cite.201490099.
    19. M. Hunger, „In situ MAS NMR spectroscopy“. Centre for Surface Chemistry and Catalysis, KU Leuven, Belgium, 2014.
    20. S.-F. Hsu u. a., „Eine auf Ru-Katalyse basierende wiederaufladbare Wasserstoffbatterie“, Bd. 126, Nr. 27, Art. Nr. 27, 2014, doi: 10.1002/ange.201310972.
    21. M. Grzywa u. a., „Coordination frameworks assembled from CuII ions and 1,3-bis(3,5-dimethyl-1H-pyrazol-4-yl)benzene ligands“, Bd. 43, S. 16846–16856, 2014, doi: 10.1039/C4DT01880J.
    22. D. P. Estes, D. C. Grills, und J. R. Norton, „The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics“, Journal of the American Chemical Society, Bd. 136, Nr. 50, Art. Nr. 50, Dez. 2014, doi: 10.1021/ja508200g.
    23. T. T. H. Dang, D.-L. Hoang, M. Schneider, M. Hunger, und A. Martin, „Impact of conventional and microwave heating on SAPO-5 formation and Brønsted acidic properties“, Zeitschrift für anorganische und allgemeine Chemie, ZAAC, Bd. 640, Nr. 8–9, Art. Nr. 8–9, 2014, doi: 10.1002/zaac.201400014.
    24. W. Dai u. a., „Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13“, Journal of catalysis, Bd. 314, S. 10–20, 2014, doi: 10.1016/j.jcat.2014.03.006.
    25. V. Calemma, M. Ferrari, T. Holl, und J. Weitkamp, „Catalytic ring opening of cyclic hydrocarbons in Diesel fuels“, Bd. 40, S. 77–83, 2014.
  11. 2013

    1. Z. Wang, S. Pokhrel, M. Chen, M. Hunger, L. Mädler, und J. Huang, „Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone“, Journal of catalysis, Bd. 302, S. 10–19, 2013, doi: 10.1016/j.jcat.2013.02.017.
    2. Z. Wang u. a., „One-step room-temperature synthesis of AlMCM-41 materials for the catalytic conversion of phenylglyoxal to ethylmandelate“, ChemCatChem, Bd. 5, Nr. 12, Art. Nr. 12, 2013, doi: 10.1002/cctc.201300375.
    3. M. Trautmann und Y. Traa, „Efficient direct brown coal liquefaction with sulfided Co/SiO2 catalysts“, Energy & fuels, Bd. 27, Nr. 9, Art. Nr. 9, 2013, doi: 10.1021/ef400962n.
    4. M. Trautmann, A. Löwe, und Y. Traa, „Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides“, in Preprints of the DGMK-Conference „New Technologies and Alternative Feedstocks in Petrochemistry and Refining“, October 9 - 11, 2013, Dresden, Germany, S. Ernst, Hrsg., in Preprints of the DGMK-Conference „New Technologies and Alternative Feedstocks in Petrochemistry and Refining“, October 9 - 11, 2013, Dresden, Germany. DGMK, 2013, S. 131–138.
    5. S. Schulze u. a., „Investigations on the anionic polymerization of butadiene in capillaries by kinetic measurements and reactor simulation“, Bd. 2, Nr. 5, Art. Nr. 5, 2013, doi: 10.1515/gps-2013-0059.
    6. K. Sato, K. Fujimoto, W. Dai, und M. Hunger, „Molecular mechanism of heavily adhesive Cs“, The @journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 117, Nr. 27, Art. Nr. 27, 2013, doi: 10.1021/jp403899w.
    7. D. Santi, S. Rabl, V. Calemma, M. Dyballa, M. Hunger, und J. Weitkamp, „Effect of noble metals on the strength of Bronsted acid sites in bifunctional zeolites“, Bd. 5, Nr. 6, Art. Nr. 6, 2013, doi: 10.1002/cctc.201200675.
    8. D. Santi, T. Holl, V. Calemma, und J. Weitkamp, „High-performance ring-opening catalysts based on iridium-containing zeolite Beta in the hydroconversion of decalin“, Applied catalysis. A, General, Bd. 455, S. 46–57, 2013, doi: 10.1016/j.apcata.2013.01.020.
    9. M. Rupp, W. Ruback, und E. Klemm, „Alcohol ethoxylation kinetics“, Chemical engineering and processing, Bd. 74, S. 187–192, 2013, doi: 10.1016/j.cep.2013.09.006.
    10. M. Rupp, W. Ruback, und E. Klemm, „Octanol ethoxylation in microchannels“, Chemical engineering and processing, Bd. 74, S. 19–26, 2013, doi: 10.1016/j.cep.2013.09.012.
    11. E. Roduner u. a., „Selective catalytic oxidation of C-H bonds with molecular oxygen“, ChemCatChem, Bd. 5, Nr. 1, Art. Nr. 1, 2013, doi: 10.1002/cctc.201200266.
    12. T. Lange, S. Heinrich, C. Liebner, H. Hieronymus, und E. Klemm, „Reaction engineering investigations of the partial oxidation of o-Xylene in the explosion regime - microfixed bed versus catalyst coating“, Bd. 85, Nr. 4, Art. Nr. 4, 2013, doi: 10.1002/cite.201200197.
    13. E. Klemm, L. Greiner, und R. Horn, „Reaktionstechnik - von der Synthese zum Prozess“, Chemie - Ingenieur - Technik, Bd. 85, Nr. 4, Art. Nr. 4, 2013, doi: 10.1002/cite.201390024.
    14. H. Henning, M. Dyballa, M. Scheibe, E. Klemm, und M. Hunger, „In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y“, Chemical physics letters, Bd. 555, S. 258–262, 2013, doi: 10.1016/j.cplett.2012.10.068.
    15. M. Grzywa u. a., „CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(I)/Ag(I) secondary building units and 3,3’,5,5’-tetraphenyl-bipyrazolate ligands“, Bd. 42, Nr. 19, Art. Nr. 19, 2013, doi: 10.1039/c3dt32302a.
    16. U. Filek, D. Mucha, M. Hunger, und B. Sulikowski, „Novel gallium and indium salts of the 12-tungstophosphoric heteropolyacid: Synthesis, characterization and catalytic properties“, Bd. 30, S. 19–22, 2013.
    17. M. Dyballa, E. Klemm, J. Weitkamp, und M. Hunger, „Effect of phosphate modification on the Bronsted acidity and methanol-to-olefin conversion activity of Zeolite ZSM-5“, Bd. 85, Nr. 11, Art. Nr. 11, 2013, doi: 10.1002/cite.201300066.
    18. W. Dai, G. Wu, L. Li, N. Guan, und M. Hunger, „Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts“, ACS catalysis, Bd. 3, Nr. 4, Art. Nr. 4, 2013, doi: 10.1021/cs400007v.
    19. V. Calemma, M. Ferrari, S. Rabl, und J. Weitkamp, „Selective ring opening of naphthenes“, Fuel, Bd. 111, S. 763–770, 2013, doi: 10.1016/j.fuel.2013.04.055.
    20. V. Calemma, M. Ferrari, S. Rabl, A. Haas, D. Santi, und J. Weitkamp, „Catalytic ring opening of cyclic hydrocarbons in Diesel fuels“, in Preprints of the DGMK-Conference „New Technologies and Alternative Feedstocks in Petrochemistry and Refining“, October 9 - 11, 2013, Dresden, Germany, in Preprints of the DGMK-Conference „New Technologies and Alternative Feedstocks in Petrochemistry and Refining“, October 9 - 11, 2013, Dresden, Germany. DGMK, 2013, S. 39–50.
  12. 2012

    1. J. Weitkamp, „Catalytic hydrocracking-mechanisms and versatility of the process“, ChemCatChem, Bd. 4, Nr. 3, Art. Nr. 3, 2012, doi: 10.1002/cctc.201100315.
    2. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, und M. Hunger, „Phosphorus modified HMCM-22“, Microporous and mesoporous materials, Bd. 151, S. 99–106, 2012, doi: 10.1016/j.micromeso.2011.11.008.
    3. S. Schuster, E. Klemm, und M. Bauer, „The role of Pd2+/Pd0 in hydrogenation by Pd(2-pymo)2n“, Chemistry - a European journal, Bd. 18, Nr. 49, Art. Nr. 49, 2012, doi: 10.1002/chem.201202129.
    4. K. Sato, K. Fujimoto, K. Kawamura, W. Dai, und M. Hunger, „Rheological mechanism of long-term self-assembly in saponite nanoparticles“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 116, Nr. 43, Art. Nr. 43, 2012, doi: 10.1021/jp307358d.
    5. R. Rachwalik, M. Hunger, und B. Sulikowski, „Transformations of monoterpene hydrocarbons on ferrierite type zeolites“, Applied catalysis. A, General, Bd. 427, S. 98–105, 2012, doi: 10.1016/j.apcata.2012.03.037.
    6. R. Rachwalik, M. Hunger, und B. Sulikowski, „Transformations of monoterpene hydrocarbons on ferrierte type zeolites“, Bd. 427/428, S. 98–105, 2012.
    7. S. Opelt, V. Krug, J. Sonntag, M. Hunger, und E. Klemm, „Investigations on stability and reusability of Pd(2-pymo)2n as hydrogenation catalyst“, Bd. 147, S. 327–333, 2012.
    8. C. Liebner, J. Fischer, S. Heinrich, T. Lange, H. Hieronymus, und E. Klemm, „Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures“, Process safety and environmental protection, Bd. 90, Nr. 2, Art. Nr. 2, 2012, doi: 10.1016/j.psep.2011.08.006.
    9. G. Li, A. Han, M. E. Pulling, D. P. Estes, und J. R. Norton, „Evidence for Formation of a Co–H Bond from (H2O)2Co(dmgBF2)2 under H2: Application to Radical Cyclizations“, Journal of the American Chemical Society, Bd. 134, Nr. 36, Art. Nr. 36, Aug. 2012, doi: 10.1021/ja306037w.
    10. T. Lange, S. Heinrich, C. Liebner, H. Hieronymus, und E. Klemm, „Reaction engineering investigations of the heterogeneously catalyzed partial oxidation of o-xylene in the explosion regime using a microfixed bed reactor“, Chemical engineering science, Bd. 69, Nr. 1, Art. Nr. 1, 2012, doi: 10.1016/j.ces.2011.10.072.
    11. I. Kley und Y. Traa, „Influence of acid sites on the propene selectivity during propane dehydrogenation on zeolite Pt/Zn,Na-MCM-22“, Microporous and mesoporous materials, Bd. 164, S. 145–147, 2012, doi: 10.1016/j.micromeso.2012.06.058.
    12. M. Hunger, „Contributions of solid-state NMR to the development and understanding of solid catalysts“. Institute of New Catalytic Materials Sciences, Nankai University, Tianjin, P.R. China, 2012.
    13. M. Hunger, „In situ solid-state NMR investigation of the interaction and conversion of ethylbenzene on acidic zeolite catalysts“, gehalten auf der 33rd Danish NMR Meeting, 2012.
    14. H. Henning, M. Dornbach, M. Scheibe, E. Klemm, und M. Hunger, „In situ MAS NMR investigation of the hydrogenation of acrylonitrile on Pt- and Rh-containing zeolites Y“, Microporous and mesoporous materials, Bd. 164, S. 104–110, 2012, doi: 10.1016/j.micromeso.2012.06.021.
    15. S. Heinrich, F. Edeling, C. Liebner, H. Hieronymus, T. Lange, und E. Klemm, „Catalyst as ignition source of an explosion inside a microreactor“, Chemical engineering science, Bd. 84, S. 540–543, 2012, doi: 10.1016/j.ces.2012.08.049.
    16. A. Haas, S. Rabl, M. Ferrari, V. Calemma, und J. Weitkamp, „Ring opening of decalin via hydrogenolysis on Ir/- and Pt/silica catalysts“, Applied catalysis. A, General, Bd. 425, S. 97–109, 2012, doi: 10.1016/j.apcata.2012.03.010.
    17. D. P. Estes, J. R. Norton, S. Jockusch, und W. Sattler, „Mechanisms by which Alkynes React with CpCr(CO)3H. Application to Radical Cyclization“, Journal of the American Chemical Society, Bd. 134, Nr. 37, Art. Nr. 37, Aug. 2012, doi: 10.1021/ja306120n.
    18. S. Ernst, J. Kärger, E. Klemm, M. Stocker, und Y. Traa, Hrsg., Microporous and mesoporous materials, Bd. 164. 2012. doi: 10.1016/j.micromeso.2012.08.008.
    19. M. Dyballa, M. Scheibe, M. Hunger, W. Dai, L. Li, und N. Guan, „PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34 upon using as MTO catalyst“, gehalten auf der 24. Deutsche Zeolith-Tagung, 2012.
    20. W. Dai, X. Wang, G. Wu, L. Li, N. Guan, und M. Hunger, „Methanol-to-olefin conversion catalyzed by low-silica AlPO-34 with traces of Bronsted acid sites“, ChemCatChem, Bd. 4, Nr. 9, Art. Nr. 9, 2012, doi: 10.1002/cctc.201100503.
    21. W. Dai, M. Scheibe, L. Li, N. Guan, und M. Hunger, „Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 116, Nr. 3, Art. Nr. 3, 2012, doi: 10.1021/jp208815g.
    22. B. Cortese, T. Noel, M. H. J. M. de Croon, S. Schulze, E. Klemm, und V. Hessel, „Modeling of anionic polymerization in flow with coupled variations of concentration, viscosity, and diffusivity“, Macromolecular reaction engineering, Bd. 6, Nr. 12, Art. Nr. 12, 2012, doi: 10.1002/mren.201200027.
    23. G. Bellussi u. a., „Catalytic ring opening of perhydroindan - hydrogenolytic and cationic reaction paths“, Chinese Journal of Catalysis, Bd. 33, Nr. 1, Art. Nr. 1, 2012, doi: 10.1016/S1872-2067(10)60278-1.
  13. 2011

    1. J. Weitkamp u. a., „Recent progress in the selective catalytic ring opening of decalin“, in Advances in zeolite science and technologies, D. Caputo und P. Aprea, Hrsg., in Advances in zeolite science and technologies. De Frede Editore, 2011, S. 321–324.
    2. J. Weitkamp, S. Rabl, A. Haas, D. Santi, M. Ferrari, und V. Calemma, „Catalytic ring opening of decalin - bifunctional versus hydrogenolytic pathways“, Bd. 37, S. 94–98, 2011.
    3. S. Rabl u. a., „Catalytic ring opening of decalin on Ir- and Pt-containing zeolite Y“, Microporous and mesoporous materials, Bd. 146, Nr. 1, Art. Nr. 1, 2011, doi: 10.1016/j.micromeso.2011.03.045.
    4. S. Rabl u. a., „Ring opening of cis-decalin on bifunctional Ir/- and Pt/La-X zeolite catalysts“, Applied catalysis. A, General, Bd. 400, Nr. 1, Art. Nr. 1, 2011, doi: 10.1016/j.apcata.2011.04.026.
    5. M. Padmanaban u. a., „Application of a chiral metal-organic framework in enantioselective separation“, Chemical communications, ChemComm, Bd. 47, Nr. 44, Art. Nr. 44, 2011, doi: 10.1039/C1CC14893A.
    6. E. Klemm, G. Mathivanan, T. Schwarz, und S. Schirrmeister, „Evaporation of hydrogen peroxide with a microstructured falling film“, Chemical engineering and processing, Bd. 50, Nr. 10, Art. Nr. 10, 2011, doi: 10.1016/j.cep.2011.05.020.
    7. Y. Jiang, J. Huang, W. Dai, und M. Hunger, „Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts“, Solid state nuclear magnetic resonance, Bd. 39, Nr. 3, Art. Nr. 3, 2011, doi: 10.1016/j.ssnmr.2011.03.007.
    8. M. Hunger, „Nutzung der Festkörper-NMR-Spektroskopie für die Entwicklung und Charakterisierung von Feststoff-Katalysatoren“. University Kaiserslautern, Department of Chemistry, 2011.
    9. M. Hunger, „Mechanisms of the methanol-to-hydrocarbon (MTH) conversion on acidic zeolite catalysts“, gehalten auf der Vietnamese-German Conference on Catalytic and Chemical Technologies for Sustainable Development Programme, 2011.
    10. M. Hunger, „Solid-state NMR as an analytical tool for the development of catalyst systems“, gehalten auf der 43nd Polish Annual Conference on Catalysis, 2011.
    11. J. Huang, Y. Jiang, N. van Vegten, M. Hunger, und A. Baiker, „Tuning the support acidity of flame-made Pd/SiO2-Al2O3 catalysts for chemoselective hydrogenation“, Journal of catalysis, Bd. 281, Nr. 2, Art. Nr. 2, 2011, doi: http://dx.doi.org/10.1016/j.jcat.2011.05.023.
    12. H. Hieronymus, J. Fischer, S. Heinrich, C. Liebner, T. Lange, und E. Klemm, „Sicherheitstechnische Untersuchungen zum Betrieb von Mikroreaktoren im Explosionsbereich“, Chemie Ingenieur Technik, Bd. 83, Nr. 10, Art. Nr. 10, 2011, doi: 10.1002/cite.201100112.
    13. F. Hibbe, J. M. van Baten, R. Krishna, C. Chmelik, J. Weitkamp, und J. Kärger, „In-depth study of mass transfer in nanoporous materials by micro-imaging“, Chemie - Ingenieur - Technik, Bd. 83, Nr. 12, Art. Nr. 12, 2011, doi: 10.1002/cite.201100167.
    14. F. Hibbe, V. R. Marthala, C. Chmelik, J. Weitkamp, und J. Kärger, „Micro-imaging of transient guest profiles in nanochannels“, Bd. 135, Nr. 18, Art. Nr. 18, 2011, doi: 10.1063/1.3652715.
    15. S. Heinrich, M. Plettig, und E. Klemm, „Role of the Ti(IV)-superoxide species in the selective oxidation of alkanes with hydrogen peroxide in the gas phase on titanium silicalite-1“, Catalysis letters, Bd. 141, Nr. 2, Art. Nr. 2, 2011, doi: 10.1007/s10562-010-0534-6.
    16. A. Demin, T. Montsch, und E. Klemm, „Untersuchungen der Induktionsphase der Hydrochlorierung von metallurgischem Silicium“, Chemie Ingenieur Technik, Bd. 83, Nr. 10, Art. Nr. 10, 2011, doi: 10.1002/cite.201100069.
    17. W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, und L. Li, „Methanol-to-olefin conversion on silicoaluminophosphate catalysts“, ACS Catalysis, Bd. 1, Nr. 4, Art. Nr. 4, 2011, doi: 10.1021/cs200016u.
    18. W. Dai, M. Scheibe, N. Guan, L. Li, und M. Hunger, „Fate of Bronsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34“, ChemCatChem, Bd. 3, Nr. 7, Art. Nr. 7, 2011, doi: 10.1002/cctc.201100059.
    19. W. Dai, N. Li, L. Li, N. Guan, und M. Hunger, „Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves“, Catalysis communications, Bd. 16, Nr. 1, Art. Nr. 1, 2011, doi: 10.1016/j.catcom.2011.09.025.
  14. 2010

    1. J. Weitkamp, S. Rabl, A. Haas, M. Ferrari, und V. Calemma, „Catalytic ring opening of decalin - bifunctional versus hydrogenolytic pathways“, in Preprints of the DGMK-Conference „The future role of hydrogen in petrochemistry and energy supply“, in Preprints of the DGMK-Conference „The future role of hydrogen in petrochemistry and energy supply“. DGMK, 2010, S. 77–86.
    2. J. Weitkamp, „Catalytic ring opening in aromatic hydrocarbons“, in On catalysis, Nr. 2, W. Reschetilowski, Hrsg., in On catalysis. , Berlin: VWB, Verl. für Wiss. und Bildung, 2010, S. 162–185.
    3. E. Weber u. a., „Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters“, Journal of molecular catalysis. B, Enzymatic, Bd. 64, Nr. 1, Art. Nr. 1, 2010, doi: 10.1016/j.molcatb.2010.01.020.
    4. Y. Traa, „Is a renaissance of coal imminent? - challenges for catalysis“, Bd. 46, S. 2175–2187, 2010, doi: 10.1039/B927060D.
    5. T. Schwarz, H. Döring, E. Klemm, und S. Schirrmeister, „Herstellung von Wandkatalysatoren für Mikrostrukturreaktoren mittels der Niederdruckspritztechnologie“, Chemie - Ingenieur - Technik, Bd. 82, Nr. 6, Art. Nr. 6, 2010, doi: 10.1002/cite.200900165.
    6. V. R. R. Marthala, J. Frey, und M. Hunger, „Accessibility and interaction of surface OH groups in microporous and mesoporous catalysts applied for vapor-phase Beckmann rearrangement of oximes“, Catalysis letters, Bd. 135, Nr. 1, Art. Nr. 1, 2010, doi: 10.1007/s10562-010-0274-7.
    7. C. Lieder, S. Opelt, M. Dyballa, H. Henning, E. Klemm, und M. Hunger, „Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 114, Nr. 39, Art. Nr. 39, 2010, doi: 10.1021/jp105700b.
    8. Y. Jiang, J. Huang, S. Marx, W. Kleist, M. Hunger, und A. Baiker, „Effect of dehydration on the local structure of framework aluminum atoms in mixed linker MIL-53(Al) materials studied by solid-state NMR spectroscopy“, The journal of physical chemistry letters, Bd. 1, Nr. 19, Art. Nr. 19, 2010, doi: 10.1021/jz1010835.
    9. M. Hunger, „In situ solid-state NMR investigation of the reactivity of ethylbenzene in acidic zeolites“, gehalten auf der 32nd Discussion Meeting and Joint Benelux/German Magnetic Resonance Conference, 2010.
    10. M. Hunger, „Catalytically active sites“, Bd. 2, J. Cejka, Hrsg., Weinheim: Wiley-VCH, 2010, S. 493–546.
    11. J. Huang, N. van Vegten, Y. Jiang, M. Hunger, und A. Baiker, „Incrasing the Bronsted acidity of flame-derived silica-alumina up to zeolitic strength“, Bd. 49, S. 7776–7781, 2010, doi: 10.1002/anie.201003391.
    12. J. Frey u. a., „Quantitative solid-state NMR investigation of V5+ species in VPO catalysts upon sequential selective oxidation of n-butane“, Journal of catalysis, Bd. 272, Nr. 1, Art. Nr. 1, 2010, doi: 10.1016/j.jcat.2010.03.004.
    13. J. Frey und M. Hunger, „UV/Vis and solid-state NMR investigation of the effect of sequential reaction conditions on VPO catalysts during selective oxidation of n-butane“, gehalten auf der 43. Jahrestreffen Deutscher Katalytiker, 2010.
    14. J. Fischer, T. Lange, R. Boehling, A. Rehfinger, und E. Klemm, „Uncatalyzed selective oxidation of liquid cyclohexane with air in a microcapillary reactor“, Chemical engineering science, Bd. 65, Nr. 16, Art. Nr. 16, 2010, doi: 10.1016/j.ces.2010.05.028.
    15. A. Bressel, J. Frey, U. Filek, B. Sulikowski, D. Freude, und M. Hunger, „Oxygen coordination of aluminum cations in dehydrated AlPW12O40 investigated by solid-state NMR spectroscopy“, Chemical physics letters, Bd. 487, Nr. 4, Art. Nr. 4, 2010, doi: 10.1016/j.cplett.2010.01.048.
  15. 2009

    1. J. Weitkamp, „Hydrogen storage in zeolites“, in Fuel cells (solid oxide fuel cells) - Measurement methods, Bd. 3, J. Garche, Hrsg., in Fuel cells (solid oxide fuel cells) - Measurement methods, vol. 3. , Amsterdam: Academic Press, 2009, S. 497–503.
    2. J. Silvestre-Albero u. a., „Characterization measurements of common reference nanoporous materials by gas adsorption (round robin tests)“, in Characterisation of Porous Solids VIII, S. Kaskel, Hrsg., in Characterisation of Porous Solids VIII. The Royal Society of Chemistry, 2009, S. 9–16. doi: 10.1039/9781847559418-00009.
    3. S. A. S. Rezai, F. Bauer, U. Decker, und Y. Traa, „Isotopic studies on the dehydroalkylation of toluene with ethane“, Journal of molecular catalysis. A, Chemical, Bd. 314, Nr. 1, Art. Nr. 1, 2009, doi: 10.1016/j.molcata.2009.08.024.
    4. J. Kärger u. a., „Benefit of microscopic diffusion measurement for the characterization of nanoporous materials“, Chemical engineering & technology, Bd. 32, Nr. 10, Art. Nr. 10, 2009, doi: 10.1002/ceat.200900160.
    5. Y. Jiang u. a., „Adsorption-Desorption Induced Structural Changes of Cu-MOF Evidenced by Solid State NMR and EPR Spectroscopy“, Journal of the American Chemical Society, Bd. 131, Nr. 6, Art. Nr. 6, 2009, doi: 10.1021/ja8088718.
    6. M. Hunger, „Techniques and applications of in situ solid-state NMR spectroscopy in heterogeneous catalysis“, gehalten auf der NMR seminar of SINTEF, 2009.
    7. M. Hunger, „Solid-state NMR spectroscopy“, in Zeolite characterization and catalysis, in Zeolite characterization and catalysis. , Dordrecht: Springer, 2009, S. 65–106.
    8. J. Huang, Y. Jiang, V. R. R. Marthala, A. Bressel, J. Frey, und M. Hunger, „Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts“, Journal of catalysis, Bd. 263, S. 277–283, 2009.
    9. J. Frey u. a., „Vanadium phosphates on mesoporous supports“, Solid state nuclear magnetic resonance, Bd. 35, Nr. 2, Art. Nr. 2, 2009, doi: 10.1016/j.ssnmr.2009.02.005.
    10. J. Frey, Y. S. Ooi, B. Thomas, R. V. R. and Marthala, A. Bressel, und M. Hunger, „Vanadium phosphates on mesoporous supports“, gehalten auf der 42. Jahrestreffen Deutscher Katalytiker, 2009.
    11. J. Fischer, C. Liebner, H. Hieronymus, und E. Klemm, „Maximum safe diameters of microcapillaries for a stoichiometric ethene/oxygen mixture“, Chemical engineering science, Bd. 64, Nr. 12, Art. Nr. 12, 2009, doi: 10.1016/j.ces.2009.03.038.
    12. C. Chmelik u. a., „Ensemble measurement of diffusion“, ChemPhysChem, Bd. 10, Nr. 15, Art. Nr. 15, 2009, doi: 10.1002/cphc.200900489.
  16. 2008

    1. R. Wolf u. a., „The homoleptic sandwich anion Co(P2C2tBu2)2-“, Angewandte Chemie. International edition, Bd. 47, Nr. 24, Art. Nr. 24, 2008, doi: 10.1002/anie.200800813.
    2. J. Weitkamp, „Ring opening of aromatics“, 2. Aufl., Bd. 7, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 3133–3152.
    3. J. Weitkamp, „Katalyse in der Verarbeitung von Erdöl und Erdgas“, in Katalyse, heterogene Katalysatoren - gestern, heute, morgen, in Katalyse, heterogene Katalysatoren - gestern, heute, morgen. , Ludwigshafen: BASF SE, 2008, S. 52–59.
    4. J. Weitkamp, „Catalysis in petroleum refining and natural gas processing“, in Catalysis, heterogeneous catalysts - yesterday, today, tomorrow, in Catalysis, heterogeneous catalysts - yesterday, today, tomorrow. , Ludwigshafen: BASF SE, 2008, S. 52–59.
    5. W. Wang und M. Hunger, „Reactivity of surface alkoxy species on acidic zeolite catalysts“, Accounts of chemical research, Bd. 41, Nr. 8, Art. Nr. 8, 2008, doi: 10.1021/ar700210f.
    6. Y. Traa und J. Weitkamp, „Alkylation of isobutane with light alkenes on solid catalysts“, 2. Aufl., Bd. 6, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 2830–2854.
    7. Y. Traa, „Non-oxidative activation of alkanes“, 2. Aufl., Bd. 7, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 3194–3206.
    8. Y. Traa, „The dehydroalkylation of toluene with ethane - an example for the non-oxidative activation of light alkanes“, in Preprints of the Conference „Future Feedstocks for Fuels and Chemicals“, S. Ernst, Hrsg., in Preprints of the Conference „Future Feedstocks for Fuels and Chemicals“. Dt. Wiss. Ges. für Erdöl, Erdgas und Kohle, 2008, S. 59–66.
    9. M. Stöcker und J. Weitkamp, „Zeolite standard catalysts and related activities of the International Zeolite Association“, 2. Aufl., Bd. 1, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 715–719.
    10. S. A. Sadat Rezai und Y. Traa, „Dehydroalkylation of toluene with ethane in a packed-bed membrane reactor with a bifunctional catalyst and a hydrogen-selective membrane“, Chemical communications, ChemComm, Nr. 20, Art. Nr. 20, 2008, doi: 10.1039/B800486B.
    11. S. A. S. Rezai und Y. Traa, „Equilibrium shift in membrane reactors: A thermodynamic analysis of the dehydrogenative conversion of alkanes“, Journal of membrane science, Bd. 319, Nr. 1, Art. Nr. 1, 2008, doi: 10.1016/j.memsci.2008.03.051.
    12. S. Opelt, S. Türk, E. Dietzsch, A. Henschel, S. Kaskel, und E. Klemm, „Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst“, Catalysis communications, Bd. 9, Nr. 6, Art. Nr. 6, 2008, doi: 10.1016/j.catcom.2007.11.019.
    13. V. R. R. Marthala, S. Rabl, und M. Hunger, „Solid-state MAS NMR studies on the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime“, gehalten auf der 20. Deutsche Zeolith-Tagung, 2008.
    14. V. R. R. Marthala, S. Rabl, J. Huang, S. A. S. Rezai, B. Thomas, und M. Hunger, „In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol“, Journal of Catalysis, Bd. 257, Nr. 1, Art. Nr. 1, 2008, doi: 10.1016/j.jcat.2008.04.014.
    15. I. Kley, S. A. S. Rezai, und Y. Traa, „Dehydroalkylation of toluene with ethane on zeolites MCM-22 and ZSM-5“, in Zeolites and related materials, A. Gédéon, P. Massiani, und F. Babonneau, Hrsg., in Zeolites and related materials. Elsevier, 2008, S. 1119–1122.
    16. E. Klemm, A. Reitzmann, und B. Vogel, „Aromatic ring oxidation of aromatics“, in Handbook of asymmetric heterogeneous catalysis, 2. Aufl., K. Ding, Hrsg., in Handbook of asymmetric heterogeneous catalysis. , Weinheim: Wiley-VCH, 2008.
    17. E. Klemm u. a., „Direct gas-phase epoxidation of propene with hydrogen peroxide on TS-1 zeolite in a microstructured reactor“, Industrial & engineering chemistry research, Bd. 47, Nr. 6, Art. Nr. 6, 2008, doi: 10.1021/ie071343+.
    18. H. G. Karge und J. Weitkamp, Hrsg., Acidity and basicity, Bd. 6. Berlin: Springer, 2008.
    19. H. G. Karge und J. Weitkamp, Hrsg., Adsorption and diffusion, Bd. 7. Berlin: Springer, 2008.
    20. M. Hunger und W. Wang, „Solid-state NMR spectroscopy“, 2. Aufl., Bd. 2, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 912–932.
    21. M. Hunger, „NMR spectroscopy for the characterization of surface acidity and basicity“, 2. Aufl., Bd. 2, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 1163–1178.
    22. M. Hunger, „Solid-state NMR characterization of Broensted acid sites in solid catalysts“, gehalten auf der TOK-CATA Seminar, 2008.
    23. M. Hunger, „In situ flow MAS NMR spectroscopy“, Progress in nuclear magnetic resonance spectroscopy, Bd. 53, Nr. 3, Art. Nr. 3, 2008, doi: 10.1016/j.pnmrs.2007.08.001.
    24. M. Hunger, „State of the art and applications of in situ solid-state NMR spectroscopy in heterogeneous catalysis“, gehalten auf der Summer School NMRCM 2008, 2008.
    25. J. Huang, Y. Jiang, V. R. R. Marthala, B. Thomas, E. Romanova, und M. Hunger, „Characterization and acidic properties of aluminum-exchanged zeolites X and Y“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 112, Nr. 10, Art. Nr. 10, 2008, doi: 10.1021/jp7103616.
    26. J. Huang, Y. Jiang, V. R. R. Marthala, Y. S. Ooi, und M. Hunger, „Regioselective H/D exchange at the side-chain of ethylbenzene on dealuminated zeolite H-Y studied by in situ MAS NMR-UV/Vis spectroscopy“, ChemPhysChem, Bd. 9, Nr. 8, Art. Nr. 8, 2008, doi: 10.1002/cphc.200800065.
    27. J. Huang, Y. Jiang, V. R. R. Marthala, und M. Hunger, „Insight into the mechanisms of the ethylbenzene disproportionation“, Journal of the American Chemical Society, JACS, Bd. 130, Nr. 38, Art. Nr. 38, 2008, doi: 10.1021/ja8042849.
    28. R. Gläser und J. Weitkamp, „Ancillary techniques in laboratory units for testing solid catalysts“, 2. Aufl., Bd. 4, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 2045–2053.
    29. U. Filek, A. Bressel, B. Sulikowski, und M. Hunger, „Structural stability and Bronsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 112, Nr. 49, Art. Nr. 49, 2008, doi: 10.1021/jp807947v.
    30. G. Ertl, H. Knözinger, F. Schüth, und J. Weitkamp, Hrsg., „Handbook of heterogeneous catalysis“. Wiley-VCH, Weinheim, 2008.
    31. A. Bressel, T. Donauer, S. Sealy, und Y. Traa, „Influence of aluminum content, crystallinity and crystallite size of zeolite Pd/H-ZSM-5 on the catalytic performance in the dehydroalkylation of toluene with ethane“, Microporous and mesoporous materials, Bd. 109, Nr. 1, Art. Nr. 1, 2008, doi: 10.1016/j.micromeso.2007.05.002.
    32. S. Alireza, S. and Rezai, und Y. Traa, „Selectivity enhancement to the exclusive formation of ethyltoluenes and hydrogen during dehydroalkylation of toluene with ethane“, Catalysis letters, Bd. 122, Nr. 1, Art. Nr. 1, 2008, doi: 10.1007/s10562-007-9348-6.
    33. P. W. Albers und J. Weitkamp, „Carbonaceous deposits“, 2. Aufl., Bd. 2, G. Ertl, Hrsg., Weinheim: Wiley-VCH, 2008, S. 1197–1217.
  17. 2007

    1. J. Weitkamp, Y. Yan, und J. Yu, Hrsg., Microporous and mesoporous materials, Bd. 105, Nr. 1/2. 2007.
    2. J. Weitkamp und M. Hunger, „Acid and base catalysis on zeolites“, in Introduction to zeolite science and practice, Nr. 168, J. Cejka, Hrsg., in Introduction to zeolite science and practice. , Amsterdam: Elsevier, 2007, S. 787–835.
    3. Y. Traa und D. Singer, „Tetraethylorthosilicat-modifizierte Zeolithe als Katalysatoren für die Dehydroalkylierung von Toluol mit Ethan“, Chemie - Ingenieur - Technik, Bd. 79, Nr. 6, Art. Nr. 6, 2007, doi: 10.1002/cite.200700031.
    4. Y. Traa, S. Sealy, und J. Weitkamp, „Characterization of the pore size of molecular sieves using molecular probes“, in Molecular sieves, Bd. 2, P. Behrens, Hrsg., in Molecular sieves, vol. 2. , Berlin: Springer, 2007, S. 103–154.
    5. D. Singer, S. A. Sadat Rezai, S. Sealy, und Y. Traa, „Influence of Pressure during the Alkylation of Toluene with Ethane“, Industrial & engineering chemistry research, Bd. 46, Nr. 2, Art. Nr. 2, 2007, doi: 10.1021/ie060407y.
    6. M. Sabo, A. Henschel, H. Frode, E. Klemm, und S. Kaskel, „Solution infiltration of palladium into MOF-5“, Journal of materials chemistry, Bd. 17, Nr. 36, Art. Nr. 36, 2007, doi: 10.1039/B706432B.
    7. R. Rachwalik, Z. Olejniczak, J. Jian, J. Huang, M. Hunger, und B. Sulikowski, „Isomerization of alpha-pinene over dealuminated ferrierite-type zeolites“, Journal of catalysis, Bd. 252, Nr. 2, Art. Nr. 2, 2007, doi: 10.1016/j.jcat.2007.10.001.
    8. V. R. R. Marthala, W. Wang, J. Jiao, Y. Jiang, J. Huang, und M. Hunger, „Effect of probe molecules with different proton affinities on the coordination of boron atoms in dehydrated zeolite H-BZSM-5“, in Microporous and mesoporous materials, D. J. Jons, B. Prelot, J. J. Zajac, und M. Stöcker, Hrsg., in Microporous and mesoporous materials, vol. 99. 2007, S. 91–97. doi: 10.1016/j.micromeso.2006.07.034.
    9. V. R. R. Marthala, W. Wang, R. Gläser, und M. Hunger, „Beckmann rearrangement of 15N-cyclohexanone oxime to caprolactam on silicalite-1, H-ZSM-5, and H-BZSM-5 studied by solid-state NMR spectroscopy“, gehalten auf der 40. Jahrestreffen Deutscher Katalytiker, 2007.
    10. E. Klemm, H. Döring, A. Geißelmann, und S. Schirrmeister, „Microstructured reactors in heterogenous catalysis“, Chemical engineering & technology, Bd. 30, Nr. 12, Art. Nr. 12, 2007, doi: 10.1002/ceat.200700311.
    11. E. Klemm, H. Döring, A. Geißelmann, und S. Schirrmeister, „Mikrostrukturreaktoren für die heterogene Katalyse“, Chemie - Ingenieur - Technik, Bd. 79, Nr. 6, Art. Nr. 6, 2007, doi: 10.1002/cite.200700052.
    12. H. G. Karge und J. Weitkamp, Hrsg., Characterization 2, Bd. 3. Berlin: Springer, 2007.
    13. Y. Jiang, W. Wang, und M. Hunger, „Formation of methylamines by the reaction of ammonia with surface methoxy species on zeolite H-Y and the silicoaluminophosphate H-SAPO-34“, gehalten auf der 15th International Zeolite Conference, 2007.
    14. Y. Jiang und M. Hunger, „Ex situ and in situ MAS NMR-UV/Vis spectroscopic study of hydrocarbon pool compounds and coke deposits formed by methanol conversion on H-SAPO-34“, gehalten auf der 40. Jahrestreffen Deutscher Katalytiker, 2007.
    15. Y. Jiang, J. Huang, J. Weitkamp, und M. Hunger, „In situ MAS NMR and UV/Vis spectroscopic studies of hydrocarbon pool compounds and coke deposits formed in the methanol-to-olefin conversion on H-SAPO-34“, in Studies in surface science and catalysis, in Studies in surface science and catalysis, vol. B. Elsevier, 2007, S. 1137–1144.
    16. Y. Jiang, J. Huang, W. Wang, und M. Hunger, „Formation of methylamines by the reaction of ammonia with surface methoxy species on zeolite H-Y and the silicoaluminophosphate H-SAPO-34“, Studies in surface science and catalysis, Bd. 170, S. 1331–1337, 2007, doi: 10.1016/S0167-2991(07)80996-7.
    17. Y. Jiang, J. Huang, V. R. R. Marthala, Y. S. Ooi, J. Weitkamp, und M. Hunger, „In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration“, Microporous and mesoporous materials, Bd. 105, Nr. 1, Art. Nr. 1, 2007, doi: 10.1016/j.micromeso.2007.05.028.
    18. M. Hunger, „Moderne Methoden der In-situ-Festkörper-NMR-Spektroskopie in der heterogenen Katalyse“, Chemie - Ingenieur - Technik, CIT, Bd. 79, Nr. 6, Art. Nr. 6, 2007, doi: 10.1002/cite.200700008.
    19. J. Huang, Y. Jiang, V. R. R. Marthala, W. Wang, B. Sulikowski, und M. Hunger, „In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La,Na-Y, and H-ZSM-5“, in Microporous and mesoporous materials, in Microporous and mesoporous materials, vol. 99. 2007, S. 86–90. doi: 10.1016/j.micromeso.2006.06.041.
    20. J. Huang, Y. Jiang, und M. Hunger, „Influence of the lanthanum exchange degree on the concentration and acid strength of bridging hydroxyl groups in zeolites La, Na-X“, in Studies in surface science and catalysis, R. Xu, Z. Gao, J. Chen, und W. Yan, Hrsg., in Studies in surface science and catalysis, vol. 170. 2007, S. 622–628. doi: 10.1016/S0167-2991(07)80900-1.
    21. R. Gläser, J. A. Lercher, K. Vorlop, und J. Weitkamp, Hrsg., „Applied catalysis. B, Environmental“, gehalten auf der 4th International Conference on Environmental Catalysis (4th ICEC), 2007.
    22. U. Filek, A. Mohamed, M. Hunger, und B. Sulikowski, „Oxidation of norbornene over heteropolyacids and their salts“, in XIV Forum Zeolitowe, 16 - 21 wrzesnia 2007, Kocierz, in XIV Forum Zeolitowe, 16 - 21 wrzesnia 2007, Kocierz. Polskie Towarzystwo Zeolitowe, 2007, S. 327–337.
    23. C. Berger, R. Gläser, und J. Weitkamp, „Synthesis of large crystals of zeolite EMT and zeolite Y with elevated nSi/nAl ratio“, in Studies in surface science and catalysis, in Studies in surface science and catalysis, vol. A. Elsevier, 2007, S. 303–310.
    24. S. Altwasser, R. Gläser, und J. Weitkamp, „Ruthenium-containing small-pore zeolites for shape-selective catalysis“, Microporous and mesoporous materials, Bd. 104, Nr. 1, Art. Nr. 1, 2007, doi: 10.1016/j.micromeso.2007.02.046.
    25. V. Ali u. a., „Arorincle catalysts for hydrocracking of aromatics“, gehalten auf der 3rd International Symposium on Hydrotreating/Hydrocracking Technologies, 2007, S. 14–17.
  18. 2006

    1. W. Wang, Y. Jiang, und M. Hunger, „Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy“, Catalysis today, Bd. 113, Nr. 1–2, Art. Nr. 1–2, 2006, doi: 10.1016/j.cattod.2005.11.015.
    2. J. Morell u. a., „Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes“, Journal of materials chemistry, Bd. 16, Nr. 27, Art. Nr. 27, 2006, doi: 10.1039/B603458F.
    3. V. R. R. Marthala, W. Wang, J. Jiao, und M. Hunger, „Coordination transformation of boron atoms in zeolite H-BZSM-5 upon the adsorption of probe molecules studied by solid-state NMR spectroscopy“, gehalten auf der First International Workshop on In situ Studies and Development of Processes Involving Nanoporous Solids, 2006.
    4. V. R. R. Marthala, Y. Jiang, J. Huang, W. Wang, R. Gläser, und M. Hunger, „Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-BZSM-5 studied by solid-state NMR spectroscopy“, Journal of the American Chemical Society, Bd. 128, Nr. 46, Art. Nr. 46, 2006, doi: 10.1021/ja066392c.
    5. M. V. Luzgin u. a., „Mechanism studies of the conversion of 13C-labeled n-butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC-MS analysis“, Chemistry - a European journal, Bd. 12, Nr. 2, Art. Nr. 2, 2006, doi: 10.1002/chem.200500382.
    6. J. Kärger u. a., „Ein bisher einmaliger Einblick in die Diffusion durch die Beobachtung der Konzentration von Gastmolekülen in nanoporösen Wirtmaterialien“, Angewandte Chemie, Bd. 118, Nr. 46, Art. Nr. 46, 2006, doi: 10.1002/ange.200602892.
    7. J. Kärger u. a., „Unprecedented insight into diffusion by monitoring the concentration of guest molecules in nanoporous host materials“, Angewandte Chemie. International edition, Bd. 45, Nr. 46, Art. Nr. 46, 2006, doi: 10.1002/anie.200602892.
    8. P. Krawiec, P. L. De Cola, R. Gläser, J. Weitkamp, C. Weidenthaler, und S. Kaskel, „Oxide foams for the synthesis of high-surface-area vanadium nitride catalysts“, Advanced materials, Bd. 18, Nr. 4, Art. Nr. 4, 2006, doi: 10.1002/adma.200500278.
    9. P. Kortunov u. a., „Internal concentration gradients of guest molecules in nanoporous host materials“, Bd. 110, S. 23821–23828, 2006.
    10. J. Jiao, W. Wang, B. Sulikowski, J. Weitkamp, und M. Hunger, „29Si and 27Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia“, Microporous and mesoporous materials, Bd. 90, Nr. 1–3, Art. Nr. 1–3, 2006, doi: 10.1016/j.micromeso.2005.08.006.
    11. J. Jiao u. a., „Effects of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms in dehydrated zeolite H, Na-Y“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry, Bd. 110, Nr. 28, Art. Nr. 28, 2006, doi: 10.1021/jp0612533.
    12. Y. Jiang, W. Wang, V. R. R. Marthala, J. Huang, B. Sulikowski, und M. Hunger, „Response to comments on the paper: ‚Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts‘ by Y. Jiang, W. Wang, V.R.R. Marthala, J. Huang, B. Sulikowski, M. Hunger“, Journal of catalysis, Bd. 244, Nr. 1, Art. Nr. 1, 2006, doi: 10.1016/j.jcat.2006.08.001.
    13. Y. Jiang, W. Wang, V. R. R. Marthala, J. Huang, B. Sulikowski, und M. Hunger, „Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts“, Journal of catalysis, Bd. 238, Nr. 1, Art. Nr. 1, 2006, doi: 10.1016/j.jcat.2005.11.029.
    14. Y. Jiang, V. R. R. Marthala, W. Wang, und M. Hunger, „Effect of organic impurities in the hydrocarbon formation via the decomposition of surface methoxy groups on solid acid catalysts“, gehalten auf der 18. Deutsche Zeolith-Tagung, 2006.
    15. Y. Jiang, M. Hunger, und W. Wang, „On the reactivity of surface methoxy species in acidic zeolites“, Journal of the American Chemical Society, Bd. 128, Nr. 35, Art. Nr. 35, 2006, doi: 10.1021/ja061018y.
    16. M. Hunger und W. Wang, „Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy“, Advances in catalysis, Bd. 50, S. 149–225, 2006, doi: 10.1016/S0360-0564(06)50004-5.
    17. A. Garsuch, O. Klepel, R. R. Sattler, C. Berger, R. Gläser, und J. Weitkamp, „Synthesis of a carbon replica of zeolite Y with large crystallite size“, Carbon, Bd. 44, Nr. 3, Art. Nr. 3, 2006, doi: 10.1016/j.carbon.2005.10.005.
    18. E. Dietzsch, J. Müller, N. Völkel, und E. Klemm, „Microreactor concepts for enhanced mass transfer in the two-phase hydroformylation of 1-octene“, in Proceedings of the DGMK/SCI-Conference „Synthesis Gas Chemistry“, in Proceedings of the DGMK/SCI-Conference „Synthesis Gas Chemistry“. DGMK, 2006, S. 163.
    19. P. L. De Cola, R. Gläser, und J. Weitkamp, „Non-oxidative propane dehydrogenation over Pt-Zn-containing zeolites“, Applied catalysis. A, General, Bd. 306, S. 85–97, 2006, doi: 10.1016/j.apcata.2006.03.028.
    20. S. Altwasser, R. Gläser, A. Sulaiman Lo, P. Liu, K. Chao, und J. Weitkamp, „Incorporation of RuO2 nanoparticles into MFI-type zeolites“, Microporous and mesoporous materials, Bd. 89, Nr. 1, Art. Nr. 1, 2006, doi: 10.1016/j.micromeso.2005.10.017.
  19. 2005

    1. M. Xu, W. Wang, J. Weitkamp, und M. Hunger, „Dry-gel synthesis of mesoporous MCM-41 materials with modified pore structure“, Bd. 219, S. 877–890, 2005.
    2. J. Weitkamp und M. Hunger, „Preparation of zeolites via the dry-gel synthesis method“, Bd. 155, S. 1–11, 2005.
    3. J. Weitkamp und M. Hunger, „Preparation of zeolites via the dry-gel method“, in Oxide based materials, Nr. 155, in Oxide based materials. , Amsterdam: Elsevier, 2005, S. 1–12.
    4. W. Wang, J. Jiao, Y. Jiang, S. S. Ray, und M. Hunger, „Formation and decomposition of surface ethoxy species on acidic zeolite Y“, ChemPhysChem, Bd. 6, Nr. 8, Art. Nr. 8, 2005, doi: 10.1002/cphc.200500262.
    5. W. Wang, J. Jiao, Y. Jiang, und M. Hunger, „Formation and decomposition of surface ethoxy groups on acidic zeolite Y studied be the in situ MAS NMR-UV/Vis spectroscopy“, gehalten auf der 47th Rocky Mountain Conference on Analytical Chemistry, 2005.
    6. Y. Traa, H. Fingerle, und B. Gehring, „Von der Mutterlauge zum Katalysatorpellet“, Chemie - Ingenieur - Technik, CIT, Bd. 77, Nr. 3, Art. Nr. 3, 2005, doi: 10.1002/cite.200407075.
    7. A. G. Stepanov, M. V. Luzgin, S. S. Arzumanov, W. Wang, M. Hunger, und D. Freude, „n-Butane conversion on sulfated zirconia“, Catalysis letters, Bd. 101, Nr. 3, Art. Nr. 3, Juni 2005, doi: 10.1007/s10562-005-4887-1.
    8. S. Sealy und Y. Traa, „Direct alkylation of toluene with ethane on bifunctional zeolite catalysts“, Applied catalysis. A, General, Bd. 294, Nr. 2, Art. Nr. 2, 2005, doi: 10.1016/j.apcata.2005.07.042.
    9. S. Sealy, D. Singer, und Y. Traa, „Direct alkylation of toluene with ethane“, in Proceedings of the DGMK/SCI-Conference Öxidation and Functionalization: Classical and Alternative Routes and Sources", S. Ernst, Hrsg., in Proceedings of the DGMK/SCI-Conference Öxidation and Functionalization: Classical and Alternative Routes and Sources". DGMK, 2005, S. 245–251.
    10. C. T. O’Connor, K. P. Möller, J. Weitkamp, und G. J. Hutchings, Hrsg., „Proceedings of the Pre-Conference School of the 14th International Zeolite Conference“, in Microporous and mesoporous materials, in Microporous and mesoporous materials, vol. 82. 2005.
    11. G. Markowz u. a., „Microstructured reactors for heterogeneously catalyzed gas-phase reactions on an industrial scale“, Chemical engineering & technology, Bd. 28, Nr. 4, Art. Nr. 4, 2005, doi: 10.1002/ceat.200407146.
    12. P. Kortunov u. a., „The role of mesopores in intracrystalline transport in USY zeolite“, Journal of the American Chemical Society, Bd. 127, Nr. 37, Art. Nr. 37, 2005, doi: 10.1021/ja053134r.
    13. P. Kortunov u. a., „Diffusion in Fluid Catalytic Cracking Catalysts on Various Displacement Scales and Its Role in Catalytic Performance“, Chemistry of Materials, Bd. 17, Nr. 9, Art. Nr. 9, 2005, doi: 10.1021/cm050031z.
    14. P. Kortunov u. a., „Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts“, in Magnetic resonance imaging, P. Fantazzini, J. Gore, und J.-P. Korb, Hrsg., in Magnetic resonance imaging, vol. 23. 2005, S. 233–237. doi: 10.1016/j.mri.2004.11.016.
    15. P. Kortunov u. a., „Sorption kinetics and intracrystalline diffusion of methanol in ferrierite“, Adsorption, Bd. 11, Nr. 3, Art. Nr. 3, 2005, doi: 10.1007/s10450-005-5396-7.
    16. R. Klingmann, R. Josl, Y. Traa, R. Gläser, und J. Weitkamp, „Hydrogenative regeneration of a Pt/La-Y zeolite catalyst deactivated in the isobutane/n-butene alkylation“, Applied catalysis. A, General, Bd. 281, Nr. 1, Art. Nr. 1, 2005, doi: 10.1016/j.apcata.2004.11.032.
    17. J. Jiao, W. Wang, und M. Hunger, „Quantitative characterization of aluminum species in non-hydrated zeolites Y by 27Al spin-echo NMR spectroscopy“, gehalten auf der 7. Deutsche Zeolith-Tagung, 2005.
    18. J. Jiao, S. S. Ray, W. Wang, J. Weitkamp, und M. Hunger, „Effect of dehydration on the local structure of framework silicon atoms in zeolites Y investigated by solid-state NMR spectroscopy“, Zeitschrift für anorganische und allgemeine Chemie, ZAAC, Bd. 631, Nr. 2–3, Art. Nr. 2–3, 2005, doi: 10.1002/zaac.200400329.
    19. J. Jiao u. a., „Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T“, Bd. 7, S. 3221–3226, 2005, doi: 10.1039/B508358C.
    20. M. Hunger, „In situ spectroscopy in heterogeneous catalysis“. Indian Institute of Petroleum (IIP), Dehra Dun, India, 2005.
    21. M. Hunger, „Aluminum distribution in non-hydrated zeolite catalysts studied by ex situ and in situ solid-state NMR spectroscopy“, gehalten auf der 47th Rocky Mountain Conference on Analytical Chemistry, 2005.
    22. M. Hunger, „Ex situ and in situ solid-state NMR investigations of activated zeolite catalysts and heterogeneous reaction systems“, gehalten auf der 37th Polish Annual Conference on Catalysis, 2005.
    23. M. Hunger, „Applications of in situ spectroscopy in zeolite catalysis“, in Microporous and mesoporous materials, C. T. O’Connor, K. P. Möller, J. Weitkamp, und G. J. Hutchings, Hrsg., in Microporous and mesoporous materials, vol. 82. 2005, S. 241–255. doi: 10.1016/j.micromeso.2005.01.037.
    24. M. Hunger, „In situ solid-state NMR spectroscopy in zeolite science“. National Laboratory of Chemistry (NCL), Poona, India, 2005.
    25. M. Hunger, „Solid-state NMR spectroscopy in heterogeneous catalysis“, gehalten auf der Lecture Series Heterogeneous Catalysis, 2005.
    26. G. Emig und E. Klemm, Technische Chemie, 5. Aufl. Berlin: Springer, 2005.
    27. C. Berger, R. Gläser, R. A. Rakoczy, und J. Weitkamp, „The synthesis of large crystals of zeolite Y re-visited“, Microporous and mesoporous materials, Bd. 83, Nr. 1–3, Art. Nr. 1–3, 2005, doi: 10.1016/j.micromeso.2005.04.009.
    28. S. Altwasser, C. Welker, Y. Traa, und J. Weitkamp, „Catalytic cracking of n-octane on small-pore zeolites“, Microporous and mesoporous materials, Bd. 83, Nr. 1–3, Art. Nr. 1–3, 2005, doi: 10.1016/j.micromeso.2005.04.028.
  20. 2004

    1. J. Weitkamp und R. Gläser, „Katalyse“, in Methodische Grundlagen, 5. Aufl., Bd. 1, R. Dittmeyer, Hrsg., in Methodische Grundlagen, vol. 1. , Weinheim: Wiley-VCH, 2004, S. 645–718.
    2. W. Wang, P. L. De Cola, R. Gläser, I. I. Ivanova, J. Weitkamp, und M. Hunger, „Methylation of phenol by methanol on acidic zeolite H-Y investigated by in situ CF MAS NMR spectroscopy“, Catalysis Letters, Bd. 94, Nr. 1, Art. Nr. 1, 2004, doi: 10.1023/B:CATL.0000019341.67169.ac.
    3. Y. Traa und B. Gehring, „X-ray mapping as a tool to characterize mixtures of large zeolite ZSM-5 crystals with amorphous impurities“, Microporous and mesoporous materials, Bd. 75, Nr. 1–2, Art. Nr. 1–2, 2004, doi: 10.1016/j.micromeso.2004.07.003.
    4. A. Simon, J. Köhler, P. Keller, J. Weitkamp, A. Buchholz, und M. Hunger, „Phase transformation of zeolites Cs,Na-Y and Cs,Na-X impregnated with cesium hydroxide“, Microporous and mesoporous materials, Bd. 68, Nr. 1–3, Art. Nr. 1–3, 2004, doi: 10.1016/j.micromeso.2003.12.019.
    5. G. Markowz u. a., „Mikrostrukturierte Reaktoren für heterogen katalysierte Gasphasenreaktionen im industriellen Maßstab“, Chemie - Ingenieur - Technik, CIT, Bd. 76, Nr. 5, Art. Nr. 5, 2004, doi: 10.1002/cite.200400073.
    6. E. Klemm und C. H. Vogel, „Technische Chemie 2003“, Nachrichten aus der Chemie, Bd. 52, Nr. 3, Art. Nr. 3, 2004, doi: 10.1002/nadc.20040520314.
    7. E. Klemm, M. Rudek, G. Markowz, und R. Schütte, „Mikroverfahrenstechnik“, in Neue Technologien, 5. Aufl., Bd. 2, R. Dittmeyer, K. Winnacker, und L. Küchler, Hrsg., in Neue Technologien, vol. 2. , Weinheim: Wiley-VCH, 2004.
    8. H. G. Karge und J. Weitkamp, Hrsg., Characterization 1, Bd. 4. Berlin: Springer, 2004.
    9. R. Josl, R. Klingmann, Y. Traa, R. Gläser, und J. Weitkamp, „Regeneration of zeolite catalysts deactivated in isobutane/butene alkylation“, Catalysis communications, Bd. 5, Nr. 5, Art. Nr. 5, 2004, doi: 10.1016/j.catcom.2004.02.005.
    10. J. Jiao, W. Wang, A. Buchholz, und M. Hunger, „PInvestigation of the cationic state of extra-framework aluminum in steamed zeolites H-Y by solid-state NMR spectroscopy“, gehalten auf der 16. Deutsche Zeolith-Tagung, 2004.
    11. J. Jiao, S. Altwasser, W. Wang, J. Weitkamp, und M. Hunger, „State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy“, The Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 108, Nr. 38, Art. Nr. 38, 2004, doi: 10.1021/jp040081b.
    12. I. I. Ivanova u. a., „An in situ 13C MAS NMR study of the zeolite-catalyzed alkylation of polar aromatics“, in Studies in surface science and catalysis, E. W. J. van Steen, M. Callanan, und C. Claeys, Hrsg., in Studies in surface science and catalysis, vol. C. Elsevier, 2004, S. 2221–2227.
    13. M. Hunger und J. Weitkamp, „Nuclear magnetic resonance“, in In-situ spectroscopy of catalysts, B. M. Weckhuysen, Hrsg., in In-situ spectroscopy of catalysts. , Stevenson Ranch, Calif.: American Scientific Publishers, 2004, S. 177–218.
    14. M. Hunger und J. Weitkamp, „In situ magnetic resonance techniques“, in In-situ spectroscopy of catalysts, B. M. Weckhuysen, Hrsg., in In-situ spectroscopy of catalysts. , Stevenson Ranch, Calif.: American Scientific Publishers, 2004, S. 177–218.
    15. M. Hunger und W. Wang, „Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique“, Bd. 2004, S. 584–585, 2004, doi: 10.1039/B315779B.
    16. M. Hunger und E. Brunner, „Characterization I - NMR spectroscopy“, in Molecular sieves, Bd. 1, Nr. 4, P. Behrens, Hrsg., in Molecular sieves, vol. 1. , Berlin: Springer, 2004, S. 201–293.
    17. M. Hunger, S. Altwasser, S. Steuernagel, und J. Weitkamp, „Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy“, in Studies in surface science and catalysis, E. W. J. van Steen, M. Callanan, und C. Claeys, Hrsg., in Studies in surface science and catalysis, vol. C. Elsevier, 2004, S. 3098–3105.
    18. M. Hunger, „In situ NMR spectroscopy in heterogeneous catalysis“, Catalysis today, Bd. 97, Nr. 1, Art. Nr. 1, 2004, doi: 10.1016/j.cattod.2004.03.061.
    19. M. Hunger, „In situ solid-state NMR investigations of the conversion of methanol on acidic zeolites under continuous-flow conditions“, gehalten auf der Pre-Conference School of the 13th International Conference on Catalysis, 2004.
    20. U. Hiemer, E. Klemm, F. Scheffler, T. Selvam, W. Schwieger, und G. Emig, „Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide“, in The chemical engineering journal, A. Renken, J. P. Baselt, und M. Matlosz, Hrsg., in The chemical engineering journal, vol. 101. 2004, S. 17–22. doi: 10.1016/j.cej.2003.11.004.
    21. S. Gomm, R. Gläser, und J. Weitkamp, „In situ investigation of cumene synthesis over dealuminated zeolite catalysts by means of a tapered-element oscillating microbalance“, in Studies in surface science and catalysis, E. W. J. van Steen, M. Callanan, und C. Claeys, Hrsg., in Studies in surface science and catalysis, vol. C. Elsevier, 2004, S. 2125–2132.
    22. R. Gläser und J. Weitkamp, „The application of zeolites in catalysis“, in Basic principles in applied catalysis, Nr. 75, M. Baerns, Hrsg., in Basic principles in applied catalysis. , Berlin: Springer, 2004, S. 159–212.
    23. A. Buchholz, W. Wang, M. Xu, A. Arnold, und M. Hunger, „Sequential steps of ammoniation of the microporous silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 108, Nr. 10, Art. Nr. 10, 2004, doi: 10.1021/jp030249d.
    24. A. Buchholz, W. Wang, J. Jiao, und M. Hunger, „Preparation and characterization of mesoporous silicoaluminophosphates“, gehalten auf der 16. Deutsche Zeolith-Tagung, 2004.
    25. A. Arnold, M. Hunger, und J. Weitkamp, „Dry-gel synthesis of zeolites AlEU-1 and GaEU-1“, Microporous and mesoporous materials, Bd. 67, Nr. 2–3, Art. Nr. 2–3, 2004, doi: 10.1016/j.micromeso.2003.10.010.
    26. S. Altwasser, A. Raichle, Y. Traa, und J. Weitkamp, „Herstellung galliumhaltiger Katalysatoren durch Festkörperreaktion saurer Zeolithe mit elementarem Gallium“, Chemie - Ingenieur - Technik, Bd. 76, Nr. 1–2, Art. Nr. 1–2, 2004, doi: 10.1002/cite.200403326.
    27. S. Altwasser, A. Raichle, Y. Traa, und J. Weitkamp, „Preparation of gallium-containing catalysts by solid-state reaction of acidic zeolites with elemental gallium“, Chemical engineering & technology, Bd. 27, Nr. 12, Art. Nr. 12, 2004, doi: 10.1002/ceat.200407044.
    28. S. Altwasser, J. Jiao, S. Steuernagel, J. Weitkamp, und M. Hunger, „Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy“, gehalten auf der 14th International Zeolite Conference, 2004.
  21. 2003

    1. M. Xu, W. Wang, und M. Hunger, „Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange“, Chemical communications, ChemComm, Bd. 2003, Nr. 6, Art. Nr. 6, 2003, doi: 10.1039/B212701F.
    2. M. Xu und M. Hunger, „H/D exchange of acetone-d6 adsorbed on zeolite H-ZSM-5“, gehalten auf der 15. Deutsche Zeolith-Tagung, 2003.
    3. J. Weitkamp, „Katalyse“, Chemie - Ingenieur - Technik, Bd. 75, Nr. 10, Art. Nr. 10, 2003, doi: 10.1002/cite.200303304.
    4. W. Wang, M. Xu, A. Buchholz, A. Arnold, und M. Hunger, „Time-resolved observation of the decomposition process of N,N,N-Trimethylanilinium cations on zeolite H-Y by in situ stopped-flow 13C MAS NMR spectroscopy“, in Magnetic resonance imaging, P. Fantazzini, Hrsg., in Magnetic resonance imaging, vol. 21. 2003, S. 329 332. doi: 10.1016/S0730-725X(03)00163-2.
    5. W. Wang, A. Buchholz, M. Seiler, und M. Hunger, „Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts“, Journal of the American Chemical Society, Bd. 125, Nr. 49, Art. Nr. 49, 2003, doi: 10.1021/ja0304244.
    6. W. Wang, A. Buchholz, I. I. Ivanova, J. Weitkamp, und M. Hunger, „Synthesis and immobilization of quaternary ammonium cations in acidic zeolites“, Bd. 2003, S. 2600–2601, 2003.
    7. W. Wang, A. Buchholz, A. Arnold, M. Xu, J. Weitkamp, und M. Hunger, „Synthesis of quaternary ammonium cations on acidic zeolite catalysts“, gehalten auf der XXXVI. Jahrestreffen Deutscher Katalytiker, 2003.
    8. W. Wang, A. Buchholz, A. Arnold, M. Xu, und M. Hunger, „Effect of surface methoxy groups on the 27Al quadrupole parameters of framework aluminum atoms in calcined zeolite H-Y“, Bd. 370, S. 88–93, 2003.
    9. Y. Traa und D. Singer, „Is the production of hydrogen and propylene from methane and ethylene feasible?“, in Proceedings of the DGMK Conference „Innovation in the Manufacture and Use of Hydrogen“, G. Emig, Hrsg., in Proceedings of the DGMK Conference „Innovation in the Manufacture and Use of Hydrogen“. DGMK, 2003, S. 229–236.
    10. Y. Traa, A. Raichle, F. Fuder, M. Rupp, und J. Weitkamp, „A novel process for converting surplus aromatics into a high-value synthetic steamcracker feed“, in Excelling in refining and delivering quality petrochemicals, in Excelling in refining and delivering quality petrochemicals, vol. 3. Institute of Petroleum, 2003, S. 243–256.
    11. Y. Traa, „Entwicklungen und Trends in der Raffinerietechnik“, Bd. 119, S. 82–85, 2003.
    12. M. Seiler, W. Wang, A. Buchholz, und M. Hunger, „Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion“, Catalysis letters, Bd. 88, Nr. 3, Art. Nr. 3, 2003, doi: 10.1023/A:1024018023895.
    13. R. A. Rakoczy und Y. Traa, „Nanocrystalline zeolite A: synthesis, ion exchange and dealumination“, Microporous and mesoporous materials, Bd. 60, Nr. 1, Art. Nr. 1, 2003, doi: 10.1016/S1387-1811(03)00318-4.
    14. A. Raichle, Y. Traa, und J. Weitkamp, „Preparation of a high-quality synthetic steamcracker feedstock from methylcyclohexane on acidic zeolite H-ZSM-5“, in Applied catalysis. B, Environmental, E. Kikuchi, K. Segawa, und M. Iwamoto, Hrsg., in Applied catalysis. B, Environmental, vol. 41. 2003, S. 193–205. doi: 10.1016/S0926-3373(02)00211-4.
    15. A. Raichle, Y. Traa, F. Fuder, M. Rupp, und J. Weitkamp, „Improving the yield of ethene in the steamcracker by recycling of pyrolysis gasoline using Pd-, Pt-, Ir-, or Ga-doped zeolites ZSM-5“, Bd. 29, Nr. 29, Art. Nr. 29, 2003.
    16. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, W. Wang, M. Hunger, und J. Weitkamp, „Mechanism of aniline methylation on zeolite catalysts investigated by in situ13C NMR spectroscopy“, Kinetics and catalysis, Bd. 44, Nr. 5, Art. Nr. 5, 2003, doi: 10.1023/A:1026158525990.
    17. M. Hunger, „In situ NMR spectroscopy in heterogeneous catalysis“, gehalten auf der Pre-Conference School of IPCAT-3, 2003.
    18. M. Hunger, „Modern application of in situ NMR spectroscopy in heterogeneous catalysis“, gehalten auf der XXXVI. Jahrestreffen Deutscher Katalytiker, 2003.
    19. M. Hunger, „Recent applications of in situ NMR spectroscopy in heterogeneous catalysis“, gehalten auf der International Congress on Operando Spectroscopy, 2003.
    20. R. Gläser und J. Weitkamp, „Supercritical carbon dioxide as a reaction medium for the zeolite-catalyzed alkylation of naphthalene“, Industrial & engineering chemistry research, Bd. 42, Nr. 25, Art. Nr. 25, 2003, doi: 10.1021/ie000153v.
    21. F. Fuder, D. Landwehr, G. Geipel, C. Herkt-Bruns, und J. Weitkamp, „A novel route for converting aromatics into hydrogen via steam reforming“, in Excelling in refining and delivering quality petrochemicals, in Excelling in refining and delivering quality petrochemicals, vol. 3. Institute of Petroleum, 2003, S. 395–403.
    22. A. Buchholz, W. Wang, A. Arnold, M. Xu, und M. Hunger, „Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy“, Microporous and mesoporous materials, Bd. 57, Nr. 2, Art. Nr. 2, 2003, doi: 10.1016/S1387-1811(02)00562-0.
    23. C. Berger, A. Raichle, R. A. Rakoczy, Y. Traa, und J. Weitkamp, „Hydroconversion of methylcyclohexane on TEOS-modified H-ZSM-5 zeolite catalysts“, Microporous and mesoporous materials, Bd. 59, Nr. 1, Art. Nr. 1, 2003, doi: 10.1016/S1387-1811(03)00270-1.
    24. A. Arnold, S. Steuernagel, M. Hunger, und J. Weitkamp, „Insight into the dry-gel synthesis of gallium-rich zeolite GaBeta“, Microporous and mesoporous materials, Bd. 62, Nr. 1–2, Art. Nr. 1–2, 2003, doi: 10.1016/S1387-1811(03)00397-4.
    25. S. Altwasser, S. Steuernagel, J. Weitkamp, und M. Hunger, „Influence of the coordination change of aluminum atoms on the Broensted acidity of dealuminated zeolites“, gehalten auf der 15. Deutsche Zeolith-Tagung, 2003.
  22. 2002

    1. M. Xu, W. Wang, M. Seiler, A. Buchholz, und M. Hunger, „Improved Bronsted acidity of mesoporous AlMCM-41 material treated with ammonium fluoride“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 106, Nr. 12, Art. Nr. 12, 2002, doi: 10.1021/jp014222a.
    2. M. Xu und M. Hunger, „Preparation of strong Broensted acid sites on MCM-41 by treatment with AlCl3“, gehalten auf der 14. Deutsche Zeolith-Tagung, 2002.
    3. M. Xu, A. Arnold, A. Buchholz, W. Wang, und M. Hunger, „Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 106, Nr. 47, Art. Nr. 47, 2002, doi: 10.1021/jp021308a.
    4. J. Weitkamp, U. Rymsa, M. Wark, und G. Schulz-Ekloff, „Preparation of oxide, sulfide and other chalcogenide clusters in molecular sieves“, in Molecular sieves, Bd. 1, Nr. 3, in Molecular sieves, vol. 1. , Berlin: Springer, 2002, S. 337–414.
    5. W. Wang, M. Seiler, J. Weitkamp, und M. Hunger, „In situ stopped-flow (SF) MAS NMR investigation of the formation and decomposition of methylanilinium cations on acidic zeolite H-Y“, gehalten auf der XXXV. Jahrestreffen Deutscher Katalytiker, 2002.
    6. W. Wang, M. Seiler, I. I. Ivanova, U. Sternberg, J. Weitkamp, und M. Hunger, „Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy“, Journal of the American Chemical Society, Bd. 124, Nr. 25, Art. Nr. 25, 2002, doi: 10.1021/ja012675n.
    7. B. Vogel, C. Schneider, und E. Klemm, „The synthesis of cresol from toluene and N2O on HAlZSM-5“, Catalysis letters, Bd. 79, Nr. 1, Art. Nr. 1, 2002, doi: 10.1023/A:1015392217345.
    8. S. Vasenkov, O. Geier, U. Schemmert, J. Kärger, R. A. Rakoczy, und J. Weitkamp, „Application of interference microscopy and Monte Carlo simulations for comparative studies of intracrystalline diffusion in zeolites“, in Fundamentals of adsorption 7, H. Kanoh, Y. Hanzawa, und K. Kaneko, Hrsg., in Fundamentals of adsorption 7. IK International Ltd, 2002, S. 53–60.
    9. A. Unger, U. Hiemer, A. Reitzmann, E. Klemm, und W. Schwieger, „Direct hydroxylation of benzene to phenol“, in Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“, in Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“. DGMK, 2002, S. 277.
    10. Y. Traa und J. Weitkamp, „Characterization of the pore width of zeolites and related materials by means of molecular probes“, Bd. 2, F. Schüth, K. S. W. Sing, und J. Weitkamp, Hrsg., Weinheim: Wiley-VCH, 2002, S. 1015–1057.
    11. Y. Traa und R. W. Thompson, „Controlled co-crystallization of zeolites A and X“, Bd. 12, S. 496–499, 2002.
    12. F. Schüth, K. S. W. Sing, und J. Weitkamp, Hrsg., „Handbook of porous solids“. Wiley-VCH, Weinheim, 2002.
    13. A. Reitzmann, E. Klemm, und G. Emig, „Kinetics of the hydroxylation of benzene with N2O on modified ZSM-5 zeolites“, in Chemical engineering journal, G. B. Marin und Y. Schuurman, Hrsg., in Chemical engineering journal, vol. 90. 2002, S. 149–164. doi: 10.1016/S1385-8947(02)00076-1.
    14. R. A. Rakoczy, M. Breuninger, M. Hunger, Y. Traa, und J. Weitkamp, „Template-free synthesis of zeolite ferrierite and characterization of its acid sites“, Chemical engineering & technology, Bd. 25, Nr. 3, Art. Nr. 3, 2002, doi: 10.1002/1521-4125(200203)25:3<273::AID-CEAT273>3.0.CO;2-4.
    15. A. Raichle, Y. Traa, und J. Weitkamp, „Producing a high-quality synthetic steamcracker feedstock from different aromatic model components of pyrolysis gasoline on bifunctional zeolite catalysts“, Catalysis today, Bd. 75, Nr. 1, Art. Nr. 1, 2002, doi: 10.1016/S0920-5861(02)00054-8.
    16. A. Raichle, Y. Traa, und J. Weitkamp, „Preparation of a synthetic steamcracker feedstock from pyrolysis gasoline on zeolite catalysts“, Bd. 118, S. 83–87, 2002.
    17. A. Küksal, E. Klemm, und G. Emig, „Reaction kinetics of the liquid-phase hydrogenation of succinic anhydride on CuZnO-catalysts with varying copper-to-zinc ratios in a three-phase slurry reactor“, Applied catalysis. A, General, Bd. 228, Nr. 1, Art. Nr. 1, 2002, doi: 10.1016/S0926-860X(01)00978-4.
    18. E. Klemm, M. Kästner, und G. Emig, „Transport phenomena and reaction in porous media“, F. Schüth, Hrsg., Weinheim: Wiley-VCH, 2002.
    19. H. G. Karge und J. Weitkamp, Hrsg., Post synthesis modification 1, Bd. 3. Berlin: Springer, 2002.
    20. I. I. Ivanova u. a., „Aniline methylation on modified zeolites with acidic, basic and redox properties“, in Impact of zeolites ond other porous materials on the new technologies at the beginning of the new millenium, R. Aiello und F. Giordano, Hrsg., in Impact of zeolites ond other porous materials on the new technologies at the beginning of the new millenium. Elsevier, 2002, S. 659–666.
    21. M. Hunger, „Applications of in situ NMR spectroscopy in heterogeneous catalysis“. Institute of Physical Chemistry at the LMU Munich, Germany, 2002.
    22. M. Hunger, „Applications of in situ MAS NMR spectroscopy in zeolite science“. Faculties of Physics und Chemistry at the University of Leipzig, Germany, 2002.
    23. S. Gomm, R. Gläser, und J. Weitkamp, „In situ observation of coke deposition on zeolite catalysts using a tapered-element oscillating microbalance (TEOM)“, Chemical engineering & technology, Bd. 25, Nr. 10, Art. Nr. 10, 2002, doi: 10.1002/1521-4125(20021008)25:10<962::AID-CEAT962>3.0.CO;2-J.
    24. R. Gläser und J. Weitkamp, „Surface hydrophobicity or hydrophilicity of porous solids“, Bd. 1, F. Schüth, K. S. W. Sing, und J. Weitkamp, Hrsg., Weinheim: Wiley-VCH, 2002, S. 395–431.
    25. G. Emig, E. Gallei, B. Lücke, und J. Weitkamp, Hrsg., Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“, Nr. 2002,4. in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle. DGMK, 2002.
    26. R. Dotzel und E. Klemm, „Isomerisation of propadiene to propyne“, in Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“, in Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“. DGMK, 2002, S. 203.
    27. T. Donauer, R. Gläser, und J. Weitkamp, „Copper-promoted Pt-catalysts for the non-oxidative propane dehydrogenation“, in Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“, G. Emig, Hrsg., in Proceedings of the DGMK Conference „Chances for Innovative Processes at the Interface Between Refining and Petrochemistry“. DGMK, 2002, S. 225–232.
    28. A. Buchholz, W. Wang, M. Xu, A. Arnold, und M. Hunger, „Thermal stability and dehydroxylation of Bronsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy“, Microporous and mesoporous materials, Bd. 56, Nr. 3, Art. Nr. 3, 2002, doi: 10.1016/S1387-1811(02)00491-2.
    29. A. Buchholz und M. Hunger, „Effect of water and ammonia on H-SAPO-34 and H-SAPO-37 studied by in situ CF MAS NMR spectroscopy“, gehalten auf der 6th International Conference on Magnetic Resonance on Porous Media, 2002.
    30. A. Arnold, M. Hunger, und J. Weitkamp, „NMR investigations of the dry gel synthesis of zeolite beta“, gehalten auf der 6th International Conference on Magnetic Resonance on Porous Media, 2002.
  23. 2001

    1. Th. Zeiser, P. Lammers, E. Klemm, Y. W. Li, J. Bernsdorf, und G. Brenner, „CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method“, Chemical engineering science, Bd. 56, Nr. 4, Art. Nr. 4, 2001, doi: 10.1016/S0009-2509(00)00398-5.
    2. J. Weitkamp, Y. Traa, und A. Raichle, „Aromaten“, Chemie - Ingenieur - Technik, Bd. 73, Nr. 8, Art. Nr. 8, 2001, doi: 10.1002/1522-2640(200108)73:8<947::AID-CITE947>3.0.CO;2-4.
    3. J. Weitkamp, R. A. Rakoczy, M. Breuninger, M. Hunger, und Y. Traa, „Templatfreie Synthese von Zeolith Ferrierit und Charakterisierung seiner sauren Zentren“, Chemie - Ingenieur - Technik, Bd. 73, Nr. 8, Art. Nr. 8, 2001, doi: 10.1002/1522-2640(200108)73:8<1024::AID-CITE1024>3.0.CO;2-A.
    4. J. Weitkamp, A. Raichle, und Y. Traa, „Preparation of a synthetic steamcracker feedstock from surplus aromatics on zeolite catalysts“, in Technology and cooperation - a fundamental strategy for Asia’s petroleum industry, in Technology and cooperation - a fundamental strategy for Asia’s petroleum industry. Chinese National Committee for the World Petroleum Congresses, 2001, S. 1–15.
    5. J. Weitkamp, A. Raichle, und Y. Traa, „Preparation of a synthetic steamcracker feedstock from surplus aromatics“, Bd. 436, S. 45–54, 2001.
    6. J. Weitkamp, A. Raichle, und Y. Traa, „Novel zeolite catalysis to create value from surplus aromatics“, Bd. 222, S. 277–297, 2001.
    7. J. Weitkamp, M. Hunger, und U. Rymsa, „Base catalysis on microporous and mesoporous materials“, Microporous and mesoporous materials, Bd. 48, Nr. 1, Art. Nr. 1, 2001, doi: 10.1016/S1387-1811(01)00366-3.
    8. M. Weihe, M. Hunger, M. Breuninger, H. G. Karge, und J. Weitkamp, „Influence of the nature of residual alkali cations on the catalytic activity of zeolites X, Y, and EMT in their Bronsted acid forms“, Journal of catalysis, Bd. 198, Nr. 2, Art. Nr. 2, 2001, doi: 10.1006/jcat.2000.3137.
    9. W. Wang, M. Seiler, I. I. Ivanova, J. Weitkamp, und M. Hunger, „In situ stopped-flow (SF) MAS NMR spectroscopy“, Bd. 2001, S. 1362–1363, 2001.
    10. W. Wang, M. Seiler, und M. Hunger, „Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 105, Nr. 50, Art. Nr. 50, 2001, doi: 10.1021/jp0129784.
    11. Y. Traa, D. M. Murphy, R. D. Farley, und G. J. Hutchings, „An EPR study on the enantioselective aziridination properties of a CuNaY zeolite“, Bd. 3, S. 1073–1080, 2001, doi: 10.1039/B010083H.
    12. M. Seiler, W. Wang, und M. Hunger, „Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ MAS NMR spectroscopy“, gehalten auf der XXXIV. Jahrestreffen Deutscher Katalytiker, 2001.
    13. M. Seiler, W. Wang, und M. Hunger, „Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ NMR spectroscopy“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 105, Nr. 34, Art. Nr. 34, 2001, doi: 10.1021/jp004455m.
    14. J. Schirmer, J. S. Kim, und E. Klemm, „Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor“, Journal of Analytical and Applied Pyrolysis, Bd. 60, Nr. 2, Art. Nr. 2, 2001, doi: 10.1016/S0165-2370(00)00197-2.
    15. U. Rymsa, M. Hunger, und J. Weitkamp, „Catalytic in situ infrared spectroscopic study of n-butyraldehyde aldol condensation“, in Zeolites and mesoporous materials at the dawn of the 21st century, A. Galarneau, Hrsg., in Zeolites and mesoporous materials at the dawn of the 21st century. Elsevier, 2001, S. 235.
    16. A. Raichle, Y. Traa, und J. Weitkamp, „Preparation of a synthetic steamcracker feedstock from pyrolysis gasoline on zeolite catalysts“, in Proceedings of the DGMK Conference „Creating Value from Light Olefins - Production and Conversion“, G. Emig, H.-J. Krämer, und J. Weitkamp, Hrsg., in Proceedings of the DGMK Conference „Creating Value from Light Olefins - Production and Conversion“. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2001, S. 49–56.
    17. A. Raichle, Y. Traa, F. Fuder, M. Rupp, und J. Weitkamp, „Haag-Dessau-Katalysatoren zur Ringöffnung von Cycloalkanen“, Angewandte Chemie, Bd. 113, Nr. 7, Art. Nr. 7, 2001, doi: 10.1002/1521-3757(20010401)113:7<1268::AID-ANGE1268>3.0.CO;2-N.
    18. A. Raichle, Y. Traa, F. Fuder, M. Rupp, und J. Weitkamp, „Haag-Dessau catalysts for ring opening of cycloalkanes“, Angewandte Chemie. International Edition, Bd. 40, Nr. 7, Art. Nr. 7, 2001, doi: 10.1002/1521-3773(20010401)40:7<1243::AID-ANIE1243>3.0.CO;2-7.
    19. A. Raichle, H. Scharl, Y. Traa, und J. Weitkamp, „Producing a synthetic steamcracker feed from cycloalkanes (or aromatics) on various zeolite catalysts“, in Zeolites and mesoporous materials at the dawn of the 21st century, A. Galarneau, Hrsg., in Zeolites and mesoporous materials at the dawn of the 21st century. Elsevier, 2001, S. 302.
    20. A. Raichle, M. Ramin, D. Singer, M. Hunger, Y. Traa, und J. Weitkamp, „Influence of the aluminum content of zeolite H-ZSM-5 on the conversion of methylcyclohexane into a high-quality synthetic steamcracker feedstock“, Catalysis communications, Bd. 2, Nr. 2, Art. Nr. 2, 2001, doi: 10.1016/S1566-7367(01)00012-7.
    21. A. Raichle, S. Moser, Y. Traa, M. Hunger, und J. Weitkamp, „Gallium-containing zeolites“, Catalysis communications, Bd. 2, Nr. 1, Art. Nr. 1, 2001, doi: 10.1016/S1566-7367(01)00003-6.
    22. E. Klemm, B. Amon, H. Redlingshöfer, E. Dieterich, und G. Emig, „Deactivation kinetics in the hydrogenation of nitrobenzene to aniline on the basis of a coke formation kinetics - investigations in an isothermal catalytic wall reactor“, in Chemical engineering science, A. Burghardt, A. Cybulsko, und R. Pohorecki, Hrsg., in Chemical engineering science, vol. 56. 2001, S. 1347–1353. doi: 10.1016/S0009-2509(00)00357-2.
    23. H. Kath, R. Gläser, und J. Weitkamp, „Beckmann rearrangement of cyclohexanone oxime on MFI-type zeolites“, Bd. 24, Nr. 2, Art. Nr. 2, 2001, doi: 10.1002/1521-4125(200102)24:2<150::AID-CEAT150>3.0.CO;2-#.
    24. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, Yu. G. Kolyagin, M. Hunger, und J. Weitkamp, „Mechanistic study of aniline methylation over acidic and basic zeolites Y“, Bd. 135, S. 23-P-12, 2001.
    25. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, M. Hunger, Yu. G. Kolyagin, und J. Weitkamp, „Surface species formed during aniline methylation on zeolite H-Y investigated by in situ MAS NMR spectroscopy“, Bd. 203, S. 375–381, 2001.
    26. M. Hunger und J. Weitkamp, „In-situ-IR-, -NMR-, -EPR- und -UV/Vis-Spektroskopie. Wege zu neuen Erkenntnissen in der heterogenen Katalyse“, Bd. 113, S. 3040–3059, 2001.
    27. M. Hunger und J. Weitkamp, „In situ IR, NMR, EPR, and UV/Vis spectroscopy“, Bd. 40, S. 2954–2971, 2001.
    28. M. Hunger, M. Seiler, und A. Buchholz, „In situ MAS NMR spectroscopic investigation of the conversion of methanol to olefins on silicoaluminophosphates SAPO-34 and SAPO-18 under continuous flow conditions“, Catalysis letters, Bd. 74, Nr. 1, Art. Nr. 1, Juni 2001, doi: 10.1023/A:1016687014695.
    29. M. Hunger, A. Buchholz, und U. Schenk, „High-temperature MAS NMR investigation of the mobility of cations and guest compounds in zeolites X and Y“, gehalten auf der 13th International Zeolite Conference, 2001.
    30. M. Hunger, A. Buchholz, und U. Schenk, „High temperature MAS NMR investigation of the mobility of cations and guest compounds in zeolites Y and X“, Bd. 135, S. 14-P-17, 2001.
    31. M. Hunger, „Modern applications of in situ NMR spectroscopy in heterogeneous catalysis“, gehalten auf der 1th EFCATS School on Catalysis, 2001.
    32. S. Gomm, R. Gläser, und J. Weitkamp, „In-situ-Bestimmung von Koksdepositen auf Zeolithkatalysatoren mittels einer oszillierenden Mikrowaage (TEOM)“, Chemie - Ingenieur - Technik, Bd. 73, Nr. 12, Art. Nr. 12, 2001, doi: 10.1002/1522-2640(200112)73:12<1584::AID-CITE1584>3.0.CO;2-4.
    33. R. Gläser, H. Kath, und J. Weitkamp, „Beckmann rearrangement of cyclohexanone oxime over mesoporous MCM-41- and MCM-48-type materials“, in Zeolites and mesoporous materials at the dawn of the 21st century, A. Galarneau, Hrsg., in Zeolites and mesoporous materials at the dawn of the 21st century. Elsevier, 2001, S. 139.
    34. O. Geier u. a., „Interference microscopy investigation of the influence of regular intergrowth effects in MFI-type zeolites on molecular uptake“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry, Bd. 105, Nr. 42, Art. Nr. 42, 2001, doi: 10.1021/jp010777u.
    35. O. Geier, S. Vasenkov, E. Lehmann, J. Kärger, R. A. Rakoczy, und J. Weitkamp, „Interference microscopy as a tool of choice for investigating the role of crystal morphology in diffusion studies“, in Zeolites and mesoporous materials at the dawn of the 21st century, A. Galarneau, Hrsg., in Zeolites and mesoporous materials at the dawn of the 21st century. Elsevier, 2001, S. 154.
    36. S. Ernst, C. Bischof, M. Hartmann, und J. Weitkamp, „Potential and limitations of octane boosting through isomerization of C7 alkanes over bifunctional zeolites“, in Refining, fuels, lubricants and environment, in Refining, fuels, lubricants and environment, vol. 3. Institute of Petroleum, 2001, S. 27–38.
    37. G. Emig, H.-J. Krämer, und J. Weitkamp, Hrsg., Proceedings of the DGMK Conference „Creating Value from Light Olefins - Production and Conversion“, Nr. 2001,4. in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle. nDeutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2001.
    38. T. Donauer, R. Gläser, und J. Weitkamp, „Non-oxidative propane dehydrogenation over supported Pt-Zn-catalysts“, in Proceedings of the DGMK Conference „Creating Value from Light Olefins - Production and Conversion“, G. Emig, H.-J. Krämer, und J. Weitkamp, Hrsg., in Proceedings of the DGMK Conference „Creating Value from Light Olefins - Production and Conversion“. Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2001, S. 203–210.
    39. S. Caldarelli, A. Buchholz, und M. Hunger, „Investigation of sodium cations in dehydrated zeolites LSX, X, and Y by 23Na off-resonance RIACT triple-quantum and high-speed MAS NMR spectroscopy“, Journal of the American Chemical Society, Bd. 123, Nr. 29, Art. Nr. 29, 2001, doi: 10.1021/ja0102538.
    40. M. Breuninger, C. Berger, R. A. Rakoczy, M. Hunger, und J. Weitkamp, „Cumolsynthese an Zeolithen“, Chemie - Ingenieur - Technik, Bd. 73, Nr. 7, Art. Nr. 7, 2001, doi: 10.1002/1522-2640(200107)73:7<869::AID-CITE869>3.0.CO;2-X.
    41. A. Arnold, M. Hunger, und J. Weitkamp, „Dry-gel-Synthese von Zeolithen des Typs GaBeta und deren quantitative Charakterisierung mittels NMR-Spektroskopie“, Chemie - Ingenieur - Technik, Bd. 73, Nr. 12, Art. Nr. 12, 2001, doi: 10.1002/1522-2640(200112)73:12<1588::AID-CITE1588>3.0.CO;2-H.
  24. 2000

    1. J. Weitkamp, A. Raichle, Y. Traa, M. Rupp, und F. Fuder, „Preparation of a synthetic steamcracker feed from cycloalkanes (or aromatics) on zeolite catalysts“, Bd. 2000, S. 403–404, 2000, doi: 10.1039/A910284L.
    2. J. Weitkamp, A. Raichle, Y. Traa, M. Rupp, und F. Fuder, „Direct conversion of aromatics into a synthetic steamcracker feed using bifunctional zeolite catalysts“, Bd. 2000, S. 1133–1134, 2000, doi: 10.1039/B003422N.
    3. J. Weitkamp, „Zeolites and catalysis“, Solid state ionics, Bd. 131, Nr. 1, Art. Nr. 1, 2000, doi: 10.1016/S0167-2738(00)00632-9.
    4. S. Vasenkov, J. Kärger, D. Freude, R. A. Rakoczy, und J. Weitkamp, „Percolation diffusion of guest molecules in NaCaA zeolites“, Journal of molecular catalysis. A, Chemical, Bd. 158, Nr. 1, Art. Nr. 1, 2000, doi: 10.1016/S1381-1169(00)00107-2.
    5. Y. Traa, B. Burger, und J. Weitkamp, „Oscillation of the NOx concentration in its selective catalytic reduction on platinum-containing zeolite catalysts“, in Studies in surface science and catalysis, A. Corma, Hrsg., in Studies in surface science and catalysis, vol. B. Elsevier, 2000, S. 1457–1462.
    6. M. Seiler, A. Buchholz, und M. Hunger, „Conversion of methanol to hydrocarbons on acidic HZSM-5, HMOR, HSAPO-34, and HSAPO-18 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography“, gehalten auf der 12. Deutsche Zeolith-Tagung, 2000.
    7. A. Küksal, E. Klemm, und G. Emig, „Single-stage liquid phase hydrogenation of maleic anhydride to gamma-butyro-lactone, 1,4-butanediol and tetrahydrofurane on Cu/ZnO/Al2O3-catalysts“, gehalten auf der 12th International Congress on Catalysis, A. Corma, F. V. Melo, S. Mendioroz, und J. L. G. Fierro, Hrsg., 2000, S. 2111.
    8. H. Kath, R. Gläser, und J. Weitkamp, „Beckmann-Umlagerung von Cyclohexanonoxim zu Epsilon-Caprolactam an Zeolithen mit MFI-Struktur“, Chemie - Ingenieur - Technik, Bd. 72, Nr. 4, Art. Nr. 4, 2000, doi: 10.1002/1522-2640(200004)72:4<400::AID-CITE400>3.0.CO;2-E.
    9. H. G. Karge, J. G. Santiesteban, M. Stöcker, und J. Weitkamp, Hrsg., Microporous and mesoporous materials, Bd. 35/36. 2000.
    10. M. Hunger, U. Schenk, M. Seiler, und J. Weitkamp, „In situ MAS NMR spectroscopy of surface compounds formed from methanol and from a toluene/methanol mixture on basic zeolite X“, Journal of molecular catalysis. A, Chemical, Bd. 156, Nr. 1, Art. Nr. 1, 2000, doi: 10.1016/S1381-1169(99)00404-5.
    11. M. Hunger, U. Schenk, und A. Buchholz, „Mobility of cations and guest compounds in cesium-exchanged and impregnated zeolites Y and X investigated by high-temperature MAS NMR spectroscopy“, The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, Bd. 104, Nr. 51, Art. Nr. 51, 2000, doi: 10.1021/jp001571g.
    12. M. Hunger, „Heterogeneously catalyzed reactions studied by in situ MAS NMR under continuous-flow conditions“, gehalten auf der Pre-Symposium ZMPC2000, 2000.
    13. M. Hunger, „In situ CF MAS NMR investigations of heterogeneously catalyzed reactions“, gehalten auf der 5th Workshop on Magnetic Resonance in Materials Science, 2000.
    14. T. Horvath, M. Seiler, und M. Hunger, „A comparative study of methyl-tert-butyl ether synthesis on zeolites HY, HBeta, HBeta/F and HZSM-5 by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography“, Applied catalysis. A, General, Bd. 193, Nr. 1, Art. Nr. 1, 2000, doi: 10.1016/S0926-860X(99)00432-9.
    15. R. Dotzel, M. Reif, und E. Klemm, „Liquid phase isomerization of propadiene to methyl acetylene on modified alumina catalysts“, gehalten auf der 12th International Congress on Catalysis, A. Corma, F. V. Melo, S. Mendioroz, und J. L. G. Fierro, Hrsg., 2000, S. 2243.
    16. B. Burger, K. Haas-Santo, M. Hunger, und J. Weitkamp, „Synthesis and characterization of aluminium-rich zeolite ZSM-5“, Chemical engineering & technology, Bd. 23, Nr. 4, Art. Nr. 4, 2000, doi: 10.1002/(SICI)1521-4125(200004)23:4<322::AID-CEAT322>3.0.CO;2-S.
    17. J. Ackermann, E. Klemm, und G. Emig, „Synthesis of ethylbenzene from 1,3-butadiene using basic zeolite catalysts“, gehalten auf der 12th International Congress on Catalysis, A. Corma, F. V. Melo, S. Mendioroz, und J. L. G. Fierro, Hrsg., 2000, S. 863–868. doi: 10.1016/S0167-2991(00)81067-8.
  25. 1999

    1. S. Wellach, M. Hartmann, S. Ernst, und J. Weitkamp, „Steam reforming of methanol for the production of hydrogen on molecular sieve catalysts“, gehalten auf der 12th International Zeolite Conference, M. Treacy, Hrsg., MRS, Materials Research Society, 1999, S. 1409–1416.
    2. J. Weitkamp und Y. Traa, „Isobutane/butene alkylation on solid catalysts. Where do we stand?“, Catalysis today, Bd. 49, Nr. 1, Art. Nr. 1, 1999, doi: 10.1016/S0920-5861(98)00424-6.
    3. J. Weitkamp, S. Ernst, und L. Puppe, „Shape-selective catalysis in zeolites“, in Catalysis and zeolites, J. Weitkamp, Hrsg., in Catalysis and zeolites. , Berlin: Springer, 1999, S. 327–376.
    4. J. Weitkamp, M. Breuninger, H. G. Karge, und M. Hunger, „Peculiarities of Bronsted acid sites in FER-type zeolites“, gehalten auf der 12th International Zeolite Conference, M. Treacy, Hrsg., MRS, Materials Research Society, 1999, S. 2697–2704.
    5. J. Weitkamp, Hrsg., Catalysis and zeolites. Berlin: Springer, 1999.
    6. Y. Traa und J. Weitkamp, „Kinetics of the methanation of carbon dioxide over ruthenium on titania“, Chemical engineering & technology, Bd. 22, Nr. 4, Art. Nr. 4, 1999, doi: 10.1002/(SICI)1521-4125(199904)22:4<291::AID-CEAT291>3.0.CO;2-L.
    7. Y. Traa, B. Burger, und J. Weitkamp, „Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons“, Microporous and mesoporous materials, Bd. 30, Nr. 1, Art. Nr. 1, 1999, doi: 10.1016/S1387-1811(99)00030-X.
    8. Y. Traa, B. Burger, und J. Weitkamp, „Abatement of N2O in the selective catalytic reduction of NOx on platinum zeolite catalysts upon promotion with vanadium“, Bd. 1999, S. 2187–2188, 1999.
    9. M. Seitz, E. Klemm, und G. Emig, „Silanation as a means to reduce deactivation“, in Catalyst deactivation 1999, in Catalyst deactivation 1999. Elsevier, 1999.
    10. M. Seitz, E. Klemm, und G. Emig, „Controlling acidity and shape selectivity of acid zeolites by silanation“, in Materials Research Society conference proceedings, M. Treacy, Hrsg., in Materials Research Society conference proceedings. MRS, Materials Research Society, 1999.
    11. M. Seiler, U. Schenk, und M. Hunger, „Conversion of methanol to hydrocarbons on zeolite HZSM-5 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography“, Bd. 62, Nr. 2–4, Art. Nr. 2–4, 1999.
    12. U. Schenk, M. Hunger, und J. Weitkamp, „Characterization of basic guest compounds on solid catalysts by 13C CP/MAS NMR spectroscopy of surface methoxy groups“, Magnetic resonance in chemistry, MRC, Bd. 37, Nr. 13, Art. Nr. 13, 1999, doi: 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-A.
    13. U. Schemmert, J. Käer, und J. Weitkamp, „Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites“, Microporous and mesoporous materials, Bd. 32, Nr. 1, Art. Nr. 1, 1999, doi: 10.1016/S1387-1811(99)00095-5.
    14. U. Schemmert, J. Kärger, C. Krause, R. A. Rákoczy, und J. Weitkamp, „Monitoring the evolution of intracrystalline concentration“, epl, Europhysical letters, Bd. 46, Nr. 2, Art. Nr. 2, 1999, doi: 10.1209/epl/i1999-00245-y.
    15. U. Rymsa, M. Hunger, H. Knözinger, und J. Weitkamp, „Spectroscopic and catalytic characterization of basic zeolites and related porous materials“, in Porous materials in environmentally friendly processes, I. Kiricsi, Hrsg., in Porous materials in environmentally friendly processes. Elsevier, 1999, S. 197–204.
    16. R. A. Rakoczy, S. Ernst, M. Hartmann, Y. Traa, und J. Weitkamp, „Synthesis of large molecular sieve crystals with the AFI (AlPO4-5) topology“, Catalysis today, Bd. 49, Nr. 1, Art. Nr. 1, 1999, doi: 10.1016/S0920-5861(98)00432-5.
    17. A. Raichle, R. A. Rakoczy, Y. Traa, und J. Weitkamp, „Reactions of methylcyclohexane on bifunctional zeolite catalysts“, in Porous materials in environmentally friendly processes, I. Kiricsi, Hrsg., in Porous materials in environmentally friendly processes. Elsevier, 1999, S. 433–440.
    18. S. Kowalak u. a., „Cation exchanged zeolites ZSM-5 for the hydroxylation of benzene with nitrous oxide“, in Materials Research Society conference proceedings, M. Treacy, Hrsg., in Materials Research Society conference proceedings. MRS, Materials Research Society, 1999.
    19. E. Klemm, A. Reitzmann, G. Emig, S. A. Buchholz, und H. W. Zanthoff, „Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways“, Bd. 115, S. 604, 1999.
    20. E. Klemm und G. Emig, „Determination of adsorption constants and diffusion coefficients of aromatics in zeolites by transient experiments in a recycle reactor“, in Materials Research Society conference proceedings, M. Treacy, Hrsg., in Materials Research Society conference proceedings. MRS, Materials Research Society, 1999.
    21. E. Klemm, B. Amon, H. Redlingshöfer, und G. Emig, „Kinetics of catalyst coking in the hydrogenation of nitrobenzene to aniline“, in Catalyst deactivation 1999, in Catalyst deactivation 1999. Elsevier, 1999.
    22. H. G. Karge und J. Weitkamp, Hrsg., Structures and structure determination, Bd. 2. Berlin: Springer, 1999.
    23. H. G. Karge, M. Hunger, und H. Beyer, „Characterization of zeolites“, in Catalysis and zeolites, J. Weitkamp, Hrsg., in Catalysis and zeolites. , Berlin: Springer, 1999, S. 198–326.
    24. M. Hunger, M. Seiler, und T. Horvath, „A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions“, Catalysis letters, Bd. 57, Nr. 4, Art. Nr. 4, März 1999, doi: 10.1023/A:1019064003201.
    25. M. Hunger, U. Schenk, B. Burger, und J. Weitkamp, „Influence of guest compounds on the base strength of zeolites Y and X investigated by NMR spectroscopy“, gehalten auf der 12th International Zeolite Conference, M. Treacy, Hrsg., MRS, Materials Research Society, 1999, S. 2503–2510.
    26. M. Hunger, U. Schenk, M. Breuninger, R. Gläser, und J. Weitkamp, „Characterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques“, Microporous and mesoporous materials, Bd. 27, Nr. 2, Art. Nr. 2, 1999, doi: 10.1016/S1387-1811(98)00260-1.
    27. M. Hunger, „Moderne Anwendungen der In-situ-NMR-Spektroskopie in der heterogenen Katalyse“. Institute of Chemical Technology, Ruhr University Bochum, Germany, 1999.
    28. R. Gläser und J. Weitkamp, „Alkylation of naphthalene on a zeolite catalyst in supercritical and gaseous rection phases“, in Proceedings of the DGMK Conference „The Future Role of Aromatics in Refining and Petrochemistry“, G. Emig, Hrsg., in Proceedings of the DGMK Conference „The Future Role of Aromatics in Refining and Petrochemistry“. Dt. Wiss. Ges. für Erdöl, Erdgas und Kohle, 1999, S. 271–278.
    29. R. Gläser und J. Weitkamp, „Zeolite-catalyzed isopropylation of naphthalene at supercritical reaction conditions“, gehalten auf der 12th International Zeolite Conference, M. Treacy, Hrsg., MRS, Materials Research Society, 1999, S. 1447–1454.
    30. G. Ertl und J. Weitkamp, Hrsg., Preparation of solid catalysts. Weinheim: Wiley-VCH, 1999.
    31. G. Ertl und J. Weitkamp, Hrsg., Environmental catalysis. Weinheim: Wiley-VCH, 1999.
    32. G. Emig, M. Rupp, und J. Weitkamp, Hrsg., Proceedings of the DGMK Conference „The Future Role of Aromatics in Refining and Petrochemistry“, Nr. 99,3. in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle. Dt. Wiss. Ges. für Erdöl, Erdgas und Kohle, 1999.
    33. H. Du, R. Klemt, F. Schell, J. Weitkamp, und E. Roduner, „ESR study of Na-Y-supported Pd and Pt ions and clusters“, gehalten auf der 12th International Zeolite Conference, M. Treacy, Hrsg., MRS, Materials Research Society, 1999, S. 2665–2672.
    34. B. Burger, K. Haas-Santo, M. Hunger, und J. Weitkamp, „Synthese und Charakterisierung von aluminiumreichen ZSM-5-Zeolithen“, Chemie - Ingenieur - Technik, Bd. 71, Nr. 7, Art. Nr. 7, 1999, doi: 10.1002/cite.330710718.
    35. E. Bosch, S. Huber, J. Weitkamp, und H. Knözinger, „Adsorption of trichloro- and trifluoromethane in Y-zeolites as studied by IR spectroscopy and multinuclear solid-state NMR“, Physical chemistry, chemical physics, Bd. 1, Nr. 4, Art. Nr. 4, 1999, doi: 10.1039/A808296K.
    36. B. Amon, H. Redlingshöfer, E. Klemm, E. Dieterich, und G. Emig, „Kinetic investigations of the deactivation by coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzene using a catalytic wall reactor“, Chemical engineering and processing, Bd. 38, Nr. 4, Art. Nr. 4, 1999, doi: 10.1016/S0255-2701(99)00037-9.
    37. B. Amon, E. Klemm, und G. Emig, „The use of a catalytic wall reactor for studying highly exothermic reactions“, Reaction kinetics and the development of catalytic processes, Nr. 122, C, Art. Nr. 122, C, 1999, doi: 10.1016/S0167-2991(99)80154-2.
    38. J. Ackermann, E. Klemm, und G. Emig, „Aromatization of 1,3-butadiene on basic zeolites in the vapor phase“, in Materials Research Society conference proceedings, M. Treacy, Hrsg., in Materials Research Society conference proceedings. MRS, Materials Research Society, 1999.
  26. 1998

    1. Y. Traa und J. Weitkamp, „Kinetik der Methanisierung von Kohlendioxid an Ruthenium auf Titandioxid“, Chemie - Ingenieur - Technik, Bd. 70, Nr. 11, Art. Nr. 11, 1998, doi: 10.1002/cite.330701115.
    2. J. Stelzer, M. Paulus, M. Hunger, und J. Weitkamp, „Hydrophobic properties of all-silica zeolite beta“, Microporous and mesoporous materials, Bd. 22, Nr. 1, Art. Nr. 1, 1998, doi: 10.1016/S1387-1811(98)00071-7.
    3. A. Reitzmann, H. Friedrich, E. Klemm, M. Häfele, und G. Emig, „Reaction engineering investigations of hydroxylation of benzene on ZSM-5 type zeolites“, in Proceedings, 3rd Polish-German Zeolite Colloquium, M. Rozwadowski, Hrsg., in Proceedings, 3rd Polish-German Zeolite Colloquium. Nicholas Copernicus Univ. Press, 1998.
    4. E. Klemm, J. G. Wang, und G. Emig, „Comparison of the sorption of benzene and phenol in silicalite, H-Al-ZSM-5, and Na-AlZSM-5 by computer simulation“, Bd. 26, S. 11, 1998.
    5. E. Klemm, M. Seitz, H. Scheidat, und G. Emig, „Controlling acidity and selectivity of HY-type zeolites by silanation“, Journal of catalysis, Bd. 173, Nr. 1, Art. Nr. 1, 1998, doi: 10.1006/jcat.1997.1915.
    6. E. Klemm, A. Reitzmann, S. Buchholz, und H. Zanthoff, „Zur Rolle von Oberflächensauerstoff- Spezies in der heterogen-katalysierten Hydroxylierung von Benzol zu Phenol mit N2O“, Chemie - Ingenieur - Technik, Bd. 70, Nr. 8, Art. Nr. 8, 1998, doi: 10.1002/cite.330700819.
    7. E. Klemm und G. Emig, „Transient experiments in a recycle reactor for the determination of diffusion coefficients in shape selective catalysis“, in Proceedings, 3rd Polish-German Zeolite Colloquium, M. Rozwadowski, Hrsg., in Proceedings, 3rd Polish-German Zeolite Colloquium. Nicholas Copernicus Univ. Press, 1998.
    8. M. Hunger, U. Schenk, und J. Weitkamp, „Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy“, Journal of molecular catalysis. A, Chemical, Bd. 134, Nr. 1, Art. Nr. 1, 1998, doi: 10.1016/S1381-1169(98)00026-0.
    9. M. Hunger, T. Horvath, und J. Weitkamp, „Methyl tertiary-butyl ether synthesis on zeolite HBeta investigated by in situ MAS NMR spectroscopy under continuous-flow conditions“, Microporous and mesoporous materials, Bd. 22, Nr. 1, Art. Nr. 1, 1998, doi: 10.1016/S1387-1811(98)00078-X.
    10. M. Hunger, „In-situ-NMR-Spektroskopie an heterogenen Reaktionssystemen“. Institute of Chemical Engineering at the University Karlsruhe (TH), Germany, 1998.
    11. M. Hunger, „Untersuchung heterogener Reaktionssysteme mittels In-situ-MAS-NMR-Spektroskopie“. Institute of Chemical Technology at the University of Dresden, Germany, 1998.
    12. M. Hunger, „Modern applications of in situ MAS NMR spectroscopy in heterogeneous catalysis“. Laboratoire de Materiaux Mineraux, Ecole Nationale Superieure de Chemie de Mulhouse, France, 1998.
    13. M. Hunger, „Heterogeneously catalyzed reactions studied by in situ MAS NMR spectroscopy“. Institut de Recherches sur la Catalyse - C.N.R.S., Villeurbanne, France, 1998.
    14. R. Gläser, R. Li, M. Hunger, S. Ernst, und J. Weitkamp, „Zeolite HNU-87“, Catalysis letters, Bd. 50, Nr. 3, Art. Nr. 3, März 1998, doi: 10.1023/A:1019039723906.
  27. 1997

    1. H. W. Zanthoff, M. Lahmer, M. Baerns, E. Klemm, M. Seitz, und G. Emig, „Enhanced product selectivity in partial oxidation of propane on multicomponent oxide catalysts by masking of total oxidation sites“, Journal of catalysis, Bd. 172, Nr. 1, Art. Nr. 1, 1997, doi: https://doi.org/10.1006/jcat.1997.1850.
    2. U. Weiß, M. Weihe, M. Hunger, H. G. Karge, und J. Weitkamp, „The induction period in ethylbenzene disproportionation over large-pore zeolites“, in Studies in surface science and catalysis, H. Chon, Hrsg., in Studies in surface science and catalysis, vol. B. Elsevier, 1997, S. 973–980.
    3. J. Weitkamp und Y. Traa, „Alkylation of isobutane with alkenes on solid catalysts“, Bd. 4, G. Ertl, Hrsg., Weinheim: VCH, 1997, S. 2039–2069.
    4. J. Weitkamp, H. Knözinger, J. Kärger, und S. Ernst, „Herstellung, physikalisch-chemische Charakterisierung und katalytische Testung von basischen Zeolith-Katalysatoren“, in Bericht über Statusseminar Katalyse, in Bericht über Statusseminar Katalyse. 1997, S. 251–268.
    5. J. Weitkamp, S. Ernst, E. Roland, und G. F. Thiele, „The modified hydrophobicity index as a novel method for characterizing the surface properties of titanium silicalites“, in Studies in surface science and catalysis, H. Chon, Hrsg., in Studies in surface science and catalysis, vol. A. Elsevier, 1997, S. 763–770.
    6. J. Weitkamp, S. Ernst, F. Cubero, F. Wester, und W. Schnick, „Nitrido-sodalite Zn6P12N24 as a material for reversible hydrogen encapsulation“, Advanced materials, Bd. 9, Nr. 3, Art. Nr. 3, 1997, doi: 10.1002/adma.19970090314.
    7. J. Weitkamp, „Ancillary techniques in laboratory units for catalyst testing“, Bd. 3, G. Ertl, Hrsg., Weinheim: VCH, 1997, S. 1376–1387.
    8. Y. Traa, M. Breuninger, B. Burger, und J. Weitkamp, „Oscillation of NOx concentration in the selective catalytic reduction of nitrogen oxides on platinum-containing zeolite catalysts“, Angewandte Chemie. International edition, Bd. 36, Nr. 19, Art. Nr. 19, 1997, doi: 10.1002/anie.199721131.
    9. Y. Traa, M. Breuninger, B. Burger, und J. Weitkamp, „Oszillation der NOx-Konzentration bei der selektiven katalytischen Reduktion von Stickoxiden an platinhaltigen Zeolith-Katalysatoren“, Bd. 109, S. 2207–2208, 1997.
    10. M. Sigl, S. Ernst, J. Weitkamp, und H. Knözinger, „Characterization of the acid properties of Al-, Ga- and Fe-HZSM-5 by low-temperature FTIR spectroscopy of adsorbed dihydrogen and ethylbenzene disproportionation“, Catalysis letters, Bd. 45, Nr. 1, Art. Nr. 1, Apr. 1997, doi: 10.1023/A:1019086722262.
    11. H. B. Schwarz u. a., „In situ 13C FT PFG NMR study of intracrystalline diffusion during isopropanol conversion in X-type zeolites“, Bd. 167, S. 248–255, 1997.
    12. K. Nowinska u. a., „Direct catalytic oxidation of benzene to phenol“, in Book of abstracts, Third European Congress of Catalysis, in Book of abstracts, Third European Congress of Catalysis. 1997.
    13. E. Klemm, J. Wang, und G. Emig, „A study of shape selectivity in ethylation/disproportionation of ethylbenzene on ZSM-5 zeolites using a continuum and a Monte Carlo method“, Chemical engineering science, Bd. 52, Nr. 18, Art. Nr. 18, 1997, doi: 10.1016/S0009-2509(97)00119-X.
    14. E. Klemm, H. Scheidat, und G. Emig, „A study of shape selectivity on zeolites in ethylbenzene disproportionation“, Chemical engineering science, Bd. 52, Nr. 16, Art. Nr. 16, 1997, doi: 10.1016/S0009-2509(97)00095-X.
    15. E. Klemm und G. Emig, „Simulation of the isomerization of an ortho-diethylbenzene on zeolites using a continuum approach and different diffusion models“, Microporous materials, Bd. 12, Nr. 4, Art. Nr. 4, 1997, doi: 10.1016/S0927-6513(97)00077-1.
    16. E. Klemm und G. Emig, „A method for the determination of diffusion coefficients in product-shape-selective catalysis on zeolites under reaction conditions“, Chemical engineering science, Bd. 52, Nr. 23, Art. Nr. 23, 1997, doi: 10.1016/S0009-2509(97)00175-9.
    17. W. Keim, B. Lücke, und J. Weitkamp, „C4 chemistry - manufacture and use of C4 hydrocarbons“, in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, A. Ziegler, Hrsg., in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, vol. 1. P & W Druck u. Verl., 1997, S. 328.
    18. M. Häfele, A. Reitzmann, E. Klemm, und G. Emig, „Hydroxylation of benzene on ZSM5 type catalysts“, in 3rd World Congress on Oxidation Catalaysis, R. K. Grasselli, S. T. Oyama, A. M. Gaffney, und J. E. Lyons, Hrsg., in 3rd World Congress on Oxidation Catalaysis. Elsevier, 1997, S. 847–856. doi: 10.1016/S0167-2991(97)81047-6.
    19. M. Hunger, U. Schenk, B. Burger, und J. Weitkamp, „Synergismus zwischen Gastkomponente und Wirtgerüst im Zeolith CsNaY nach Imprägnierung mit Caesiumhydroxid“, Angewandte Chemie, Bd. 109, Nr. 22, Art. Nr. 22, 1997, doi: 10.1002/ange.19971092232.
    20. M. Hunger, U. Schenk, B. Burger, und J. Weitkamp, „Synergism between the guest compound and the host framework in zeolite Cs,Na-Y after impregnation with cesium hydroxide“, Bd. 36, Nr. 22, Art. Nr. 22, 1997, doi: 10.1002/anie.199725041.
    21. M. Hunger, P. Sarv, und A. Samoson, „Two-dimensional triple-quantum 23Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites“, Solid state nuclear magnetic resonance, Bd. 9, Nr. 2, Art. Nr. 2, 1997, doi: 10.1016/S0926-2040(97)00051-9.
    22. M. Hunger, T. Horvath, und J. Weitkamp, „Conversion of propan-2-ol on zeolite La,Na-Y investigated by in situ MAS NMR spectroscopy under continuous-flow conditions“, in Studies in surface science and catalysis, H. Chon, Hrsg., in Studies in surface science and catalysis, vol. B. Elsevier, 1997, S. 853–860.
    23. M. Hunger, T. Horvath, und J. Weitkamp, „MTBE synthesis on zeolites investigated by in situ NMR spectroscopy“, in Proceedings of the DGMK-Conference „C4 Chemistry - Manufacture and Use of C4 Hydrocarbons“, October 6-8, 1997, Aachen, Germany, in Proceedings of the DGMK-Conference „C4 Chemistry - Manufacture and Use of C4 Hydrocarbons“, October 6-8, 1997, Aachen, Germany. DGMK, 1997, S. 65–72.
    24. M. Hunger und T. Horvath, „Sorption of methanol on zeolite HBeta investigated by in situ MAS NMR spectroscopy“, Catalysis letters, Bd. 49, Nr. 1, Art. Nr. 1, Nov. 1997, doi: 10.1023/A:1019028532141.
    25. M. Hunger und T. Horvath, „Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR Spectroscopy under continuous-flow conditions“, Journal of catalysis, Bd. 167, Nr. 1, Art. Nr. 1, 1997, doi: 10.1006/jcat.1997.1562.
    26. M. Hunger, „In-situ-NMR-Untersuchungen heterogen katalysierter Reaktionen unter Stroemungsbedingungen“, gehalten auf der Meeting of the DECHEMA-subgroup „Zeolites“, 1997.
    27. M. Hunger, „Moderne Anwendungen der In-situ-NMR-Spektroskopie in der heterogenen Katalyse“, gehalten auf der 477th DECHEMA-Colloquium, 1997.
    28. M. Hunger, „Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy“, Catalysis reviews, Bd. 39, Nr. 4, Art. Nr. 4, 1997, doi: 10.1080/01614949708007100.
    29. R. Gläser, R. Roesky, T. Boger, G. Eigenberger, S. Ernst, und J. Weitkamp, „Probing the hydrophobic properties of MCM-41-type materials by the hydrophobicity index“, in Studies in surface science and catalysis, H. Chon, Hrsg., in Studies in surface science and catalysis, vol. A. Elsevier, 1997, S. 695–702.
    30. G. Ertl, H. Knözinger, und J. Weitkamp, Hrsg., „Handbook of heterogeneous catalysis“. VCH, Weinheim, 1997.
    31. S. Ernst, M. Hunger, und J. Weitkamp, „Hydrothermalsynthese und physikalisch-chemische Charakterisierung von Zeolith MCM-58“, Chemie - Ingenieur - Technik, Bd. 69, Nr. 1–2, Art. Nr. 1–2, 1997, doi: 10.1002/cite.330690109.
    32. T. Boger, M. Fritz, R. Ascher, S. Ernst, J. Weitkamp, und G. Eigenberger, „Selektive Trennung von p- und m-Xylol an zeolithischen Adsorbentien in der Gasphase“, Chemie - Ingenieur - Technik, Bd. 69, Nr. 4, Art. Nr. 4, 1997, doi: 10.1002/cite.330690409.
    33. T. Boger, R. Roesky, R. Gläser, S. Ernst, G. Eigenberger, und J. Weitkamp, „Influence of the aluminum content on the adsorptive properties of MCM-41“, Microporous materials, Bd. 8, Nr. 1, Art. Nr. 1, 1997, doi: 10.1016/S0927-6513(96)00061-2.
  28. 1996

    1. J. Weitkamp u. a., „Solid-state ion exchange of alkali metal cations into zeolite Y“, in Studies in surface science and catalysis, in Studies in surface science and catalysis, vol. B. Elsevier, 1996, S. 731–740.
    2. J. Weitkamp und S. Ernst, „Characterization of the surface properties of porous adsorbents and catalysts by the hydrophobicity index“, Bd. 96, S. 82–85, 1996.
    3. J. Weitkamp, Hrsg., Proceedings of the DGMK Conference Catalysis on Solid Acids and Bases, Nr. 96,1. in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle. DGMK, 1996.
    4. R. Q. Snurr u. a., „In SituPFG NMR study of intracrystalline diffusion during ethene conversion in ZSM-5“, Journal of catalysis, Bd. 163, Nr. 1, Art. Nr. 1, 1996, doi: 10.1006/jcat.1996.0312.
    5. J. Kärger u. a., „Catalytic reactions in zeolites studied by in situ PFG NMR and MAS NMR techniques“, in Proceedings of the DGMK Conference Catalysis on Solid Acids and Bases, J. Weitkamp, Hrsg., in Proceedings of the DGMK Conference Catalysis on Solid Acids and Bases. DGMK, 1996, S. 87–94.
    6. M. Hunger und T. Horvath, „Adsorption of methanol on Bronsted acid sites in zeolite H-ZSM-5 investigated by multinuclear solid-state NMR spectroscopy“, Journal of the American Chemical Society, Bd. 118, Nr. 49, Art. Nr. 49, 1996, doi: 10.1021/ja962425k.
    7. M. Hunger, S. Ernst, S. Steuernagel, und J. Weitkamp, „High-field H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22“, Microporous materials, Bd. 6, Nr. 5, Art. Nr. 5, 1996, doi: https://doi.org/10.1016/0927-6513(96)00043-0.
    8. M. Hunger, „Solid-state NMR investigations of zeolites“. Leverhulme Centre for Innovative Catalysis, The University of Liverpool, U.K., 1996.
    9. M. Hunger, „Anwendung der Festkoerper-NMR-Spektroskopie zur Charakterisierung von Zeolithen“, gehalten auf der 1st Workshop on Magnetic Resonance in Materials Science, 1996.
    10. M. Hunger, „Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites“, Solid state nuclear magnetic resonance, Bd. 6, Nr. 1, Art. Nr. 1, 1996, doi: 10.1016/0926-2040(95)01201-X.
    11. M. Hunger, „Moderne physikochemische Methoden zur Aufklaerung nanoporöser Materialien“. Faculty of Chemistry, University of Bayreuth, Germany, 1996.
    12. M. Hunger, „Conversion of propan-2-ol on zeolite Y investigated by in situ MAS NMR spectroscopy under continuous-flow conditions“, gehalten auf der 19th Annual Meeting of the British Zeolite Association, 1996.
    13. M. Hunger, „Ex situ and in situ solid-state NMR investigations of Bronsted sites in zeolites“, gehalten auf der plenary lecture, 8th German Zeolite Meeting, 1996.
    14. M. Feuerstein, M. Hunger, G. Engelhardt, und J. P. Amoureux, „Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy“, Solid state nuclear magnetic resonance, Bd. 7, Nr. 2, Art. Nr. 2, 1996, doi: 10.1016/S0926-2040(96)01246-5.
    15. N.-K. Bär, S. Ernst, J. Kärger, H. B. Schwarz, und J. Weitkamp, „Influence of intracrystalline confinement on pulsed field gradient NMR diffusion studies with zeolite crystallites of finite size“, Microporous materials, Bd. 6, Nr. 5, Art. Nr. 5, 1996, doi: 10.1016/0927-6513(96)00029-6.
  29. 1995

    1. J. Weitkamp, U. Weiß, und S. Ernst, „New aspects and trends in zeolite catalysis“, in Catalysis by microporous materials, H. K. Beyer, Hrsg., in Catalysis by microporous materials. Elsevier, 1995, S. 363–380.
    2. J. Weitkamp, M. Fritz, und S. Ernst, „Zeolites as media for hydrogen storage“, International journal of hydrogen energy, Bd. 20, Nr. 12, Art. Nr. 12, 1995, doi: 10.1016/0360-3199(95)00058-L.
    3. J. Weitkamp, S. Ernst, T. Bock, A. Kiss, und P. Kleinschmit, „Introduction of noble metals into small-pore zeolites via solid-state ion exchange“, in Catalysis by microporous materials, H. K. Beyer, Hrsg., in Catalysis by microporous materials. Elsevier, 1995, S. 278–285.
    4. J. Kärger, W. Keller, H. Pfeifer, S. Ernst, und J. Weitkamp, „Unexpectedly low translational mobility of methane and tetrafluoromethane in the large-pore molecular sieve VPI-5“, Microporous materials, Bd. 3, Nr. 4, Art. Nr. 4, 1995, doi: 10.1016/0927-6513(94)00049-2.
    5. H. Koller, B. Burger, A. M. Schneider, G. Engelhardt, und J. Weitkamp, „Location of Na+ and Cs+ cations in CsNaY zeolites studied by 23Na and 133Cs magic-angle spinning nuclear magnetic resonance spectroscopy combined with X-ray structure analysis by Rietveld refinement“, Microporous materials, Bd. 5, Nr. 4, Art. Nr. 4, 1995, doi: 10.1016/0927-6513(95)00061-5.
    6. E. Klemm, H. Seiler, und G. Emig, „A computer simulation of shape selective catalysis on zeolites“, in Zeolite science 1994, H. G. Karge, Hrsg., in Zeolite science 1994. Elsevier, 1995, S. 246.
    7. H. Klein, H. Fuess, und M. Hunger, „Cation location and migration in lanthanum-exchanged zeolite NaY studied by X-ray powder diffraction and MAS NMR spectroscopy“, Journal of the Chemical Society. Farady transcations, Bd. 91, Nr. 12, Art. Nr. 12, 1995, doi: 10.1039/FT9959101813.
    8. H. G. Karge und J. Weitkamp, Hrsg., Zeolite science 1994, Nr. 98. in Studies in surface science and catalysis. Elsevier, 1995, S. XXXV, 492.
    9. M. Hunger, T. Horvath, G. Engelhardt, und H. G. Karge, „Multi-nuclear NMR study of the interaction of SiOHAl groups with cationic and neutral guest-molecules in dehydrated zeolites Y and ZSM-5“, in Catalysis by microporous materials, H. K. Beyer, H. G. Karge, I. Kiricsi, und J. B. Nagy, Hrsg., in Catalysis by microporous materials, vol. 94. Elsevier, 1995, S. 756–763. doi: 10.1016/S0167-2991(06)81293-0.
    10. M. Hunger und T. Horvath, „Multi-nuclear solid-state NMR study of the local structure of SiOHAl groups and their interaction with probe-molecules in dehydrated faujasite, mordenite and zeolite ZSM-5“, Berichte der Bunsen-Gesellschaft für Physikalische Chemie, Bd. 99, Nr. 11, Art. Nr. 11, 1995, doi: 10.1002/bbpc.199500077.
    11. M. Hunger und T. Horvath, „A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions“, Journal of the Chemical Society. Chemical communications, J. Chem. Soc., Chem. Commun., Nr. 14, Art. Nr. 14, 1995, doi: 10.1039/C39950001423.
    12. M. Hunger, S. Ernst, und J. Weitkamp, „Multinuclear solid-state n.m.r. investigation of zeolite MCM-22“, Zeolites, Bd. 15, Nr. 3, Art. Nr. 3, 1995, doi: 10.1016/0144-2449(94)00038-T.
    13. M. Hunger, G. Engelhardt, und J. Weitkamp, „Solid-state 23Na, 139La, 27Al and 29Si nuclear magnetic resonance spectroscopic investigations of cation location and migration in zeolites LaNaY“, Microporous materials, Bd. 3, Nr. 4, Art. Nr. 4, 1995, doi: 10.1016/0927-6513(94)00061-Y.
    14. M. Hunger, „Techniken und Anwendungen der Festkoerper-NMR-Spektroskopie zur Charakterisierung von Bronsted-Zentren in Zeolithen“, gehalten auf der Seminar on NMR Spectroscopy and NMR-Imaging, 1995.
    15. M. Hunger, „In situ MAS NMR investigations of alcohol conversion on zeolites under continuous-flow conditions“, gehalten auf der 17th Workshop on Magnetic Resonance and the Structure of Matter, 1995.
    16. M. Hunger, „Multikern-Festkoerper-NMR-Untersuchungen zur Wechselwirkung von Gastmolekuelen mit SiOHAl-Gruppen im dehydralisierten Faujasit, Mordenit und ZSM-5-Zeolith“, gehalten auf der 94. Hauptversammlung der Deutschen Bunsengesellschaft für Physikalische Chemie e.V., 1995.
    17. U. Gräser, W. Keim, W. J. Petzny, und J. Weitkamp, „Perspektiven der Petrochemie“, Bd. 111, S. 208–218, 1995.
    18. H. Ernst u. a., „NMR evidence on the role of diffusion in zeolite catalysis“, in Catalysis by microporous materials, H. K. Beyer, Hrsg., in Catalysis by microporous materials. Elsevier, 1995, S. 748–755.
    19. H. B. chwarz u. a., „NMR study of intrinsic diffusion and reaction in CsNaX type zeolites“, Applied catalysis. A, General, Bd. 130, Nr. 2, Art. Nr. 2, 1995, doi: 10.1016/0926-860X(95)00113-1.
  30. 1994

    1. J. Weitkamp, D. Schmid, M. Fritz, F. Cubero, und S. Ernst, „Wasserstoff-Speicherung in Zeolithen“, in Wasserstoff als Energieträger, in Wasserstoff als Energieträger. Düsseldorf: VDI-Verl., 1994, S. 287–301.
    2. J. Weitkamp, H. G. Karge, H. Pfeifer, und W. Hölderich, Hrsg., Zeolites and related microporous materials, Nr. 84. in Studies in surface science and catalysis. Elsevier, 1994.
    3. J. Weitkamp und S. Ernst, „Large pore molecular sieves: Chapter 5 Catalytic test reactions for probing the pore width of large and super-large pore molecular sieves“, Catalysis today, Bd. 19, Nr. 1, Art. Nr. 1, 1994, doi: 10.1016/0920-5861(94)85005-4.
    4. S. Unverricht, M. Hunger, S. Ernst, H. G. Karge, und J. Weitkamp, „Zeolite MCM-22 - synthesis, dealumination and structural characterization“, in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, und W. Hölderich, Hrsg., in Zeolites and related microporous materials. Elsevier, 1994, S. 37–44.
    5. S. Unverricht, S. Ernst, und J. Weitkamp, „Isobutane/1-butene alkylation on zeolites beta and MCM-22“, in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, und W. Hölderich, Hrsg., in Zeolites and related microporous materials. Elsevier, 1994, S. 1693–1700.
    6. T. Riemer, D. Spielbauer, M. Hunger, G. A. H. Mekhemer, und H. Knözinger, „Superacid properties of sulfated zirconia as measured by Raman spectroscopy and 1H MAS NMR“, Bd. 1994, S. 1181–1182, 1994.
    7. I. Mirsojew, S. Ernst, J. Weitkamp, und H. Knözinger, „Characterization of acid properties of Al- and Ga-HZSM-5 zeolites by low temperature Fourier transform infrared spectroscopy of adsorbed carbon monoxide“, Catalysis letters, Bd. 24, Nr. 3, Art. Nr. 3, Sep. 1994, doi: 10.1007/BF00811796.
    8. M. A. Makarova, A. F. Ojo, K. Karim, M. Hunger, und J. Dwyer, „FTIR study of weak hydrogen bonding of Broensted hydroxyls in zeolites and aluminophosphates“, The Journal of Physical Chemistry, Bd. 98, Nr. 14, Art. Nr. 14, 1994, doi: 10.1021/j100065a013.
    9. H. Klein, H. Fuessa, S. Ernst, und J. Weitkamp, „Localization of naphthalenes in zeolite HZSM-5 by X-ray powder diffraction and molecular mechanics calculation“, Microporous materials, Bd. 3, Nr. 3, Art. Nr. 3, 1994, doi: 10.1016/0927-6513(94)00037-9.
    10. H. G. Karge, S. Ernst, U. Weihe, U. Weiß, und J. Weitkamp, „Ethylbenzene disproportionation over large-pore zeolites“, in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, und W. Hölderich, Hrsg., in Zeolites and related microporous materials. Elsevier, 1994, S. 1805–1812.
    11. K. Jansen, M. Stöcker, H. G. Karge, und J. Weitkamp, Hrsg., Advanced zeolite science and applications, Nr. 85. in Studies in surface science and catalysis. Amsterdam: Elsevier, 1994.
    12. M. Hunger, G. Engelhardt, und J. Weitkamp, „Cation migration in zeolite LaNa-Y investigated by multinuclear solid-state NMR“, in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, und W. Hölderich, Hrsg., in Zeolites and related microporous materials. Elsevier, 1994, S. 725–732.
    13. W. Heink, J. Kärger, S. Ernst, und J. Weitkamp, „P.f.g. n.m.r. study of the influence of the exchangeable cations on the self-diffusion of hydrocarbons in zeolites“, Zeolites, Bd. 14, Nr. 5, Art. Nr. 5, 1994, doi: 10.1016/0144-2449(94)90104-X.
    14. U. Gräser, W. Keim, W. J. Petzny, und J. Weitkamp, „Perspektiven der Petrochemie“, in Proceedings of the DGMK Conference, Leipzig, October 6-7, 1994, in Proceedings of the DGMK Conference, Leipzig, October 6-7, 1994. DGMK, 1994, S. 51–86.
    15. S. Ernst und J. Weitkamp, „Chapter 3 - Synthesis of large pore alumosilicates“, Catalysis today, Bd. 19, Nr. 1, Art. Nr. 1, 1994, doi: 10.1016/0920-5861(94)85003-8.
    16. S. Ernst, Y. Traa, und U. Deeg, „Preparation, characterization and catalytic properties of cobalt phthalocyanine encapsulated in zeolite EMT“, in Studies in surface science and catalysis, J. Weitkamp, Hrsg., in Studies in surface science and catalysis, vol. B. Elsevier, 1994, S. 925–932.
    17. G. Engelhardt, M. Hunger, H. Koller, und J. Weitkamp, „Exploring cation siting in zeolites by solid-state NMR of quadrupolar nuclei“, in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, und W. Hölderich, Hrsg., in Zeolites and related microporous materials. Elsevier, 1994, S. 421–428.
    18. G. Emig, E. Klemm, und H. Seiler, „Modellierung formselektiver Katalyse in Zeolithen“, Chemie - Ingenieur - Technik, Bd. 66, Nr. 7, Art. Nr. 7, 1994, doi: 10.1002/cite.330660716.
  31. 1993

    1. J. Weitkamp und R. Schumacher, „Synthesis, dealumination, and physico-chemical characterization of zeolite EMT“, in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, R. von Ballmoos, J. B. Higgins, und M. M. J. Treacy, Hrsg., in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992. Butterworth-Heinemann, 1993, S. 353–360.
    2. J. Weitkamp, P. Kleinschmit, A. Kiss, und C. H. Berke, „The hydrophobicity index - a valuable test for probing the surface properties of zeolitic adsorbents or catalysts“, in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, R. von Ballmoos, J. B. Higgins, und M. M. J. Treacy, Hrsg., in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992. Butterworth-Heinemann, 1993, S. 79–87.
    3. J. Weitkamp und P. A. Jacobs, „Isobutane/1-butene alkylation on pentasil-type zeolite catalysts“, in Studies in surface science and catalysis, L. Guczi, Hrsg., in Studies in surface science and catalysis, vol. B. Elsevier, 1993, S. 1735–1738.
    4. J. Weitkamp, M. Fritz, und S. Ernst, „Zeolites as media for hydrogen storage“, in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, R. von Ballmoos, J. B. Higgins, und M. M. J. Treacy, Hrsg., in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992. Butterworth-Heinemann, 1993, S. 11–19.
    5. J. Weitkamp, „Host/guest chemistry and catalysis in zeolites“, in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, R. von Ballmoos, J. B. Higgins, und M. M. J. Treacy, Hrsg., in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992. Butterworth-Heinemann, 1993, S. 13–45.
    6. R. Schumacher, S. Ernst, und J. Weitkamp, „Separation of gaseous tetrachloroethene/water mixtures by adsorption on zeolites“, in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, R. von Ballmoos, J. B. Higgins, und M. M. J. Treacy, Hrsg., in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992. Butterworth-Heinemann, 1993, S. 89–96.
    7. B. Marler u. a., „The structure of zeolite ZSM-23 (MTT) refined from synchrotron X-ray powder data“, Journal of applied crystallography, Bd. 26, Nr. 5, Art. Nr. 5, Okt. 1993, doi: 10.1107/S0021889893002006.
    8. M. Hunger, M. W. Anderson, A. Ojo, und H. Pfeifer, „Study of the geometry and location of the bridging OH groups in aluminosilicate and silicoaluminophosphate type zeolites using 1H MAS NMR sideband analysis and CP/MAS NMR“, Microporous materials, Bd. 1, Nr. 1, Art. Nr. 1, 1993, doi: 10.1016/0927-6513(93)80005-F.
    9. S. Ernst, R. Kumar, und J. Weitkamp, „Hydrothermal transformation of zeolite ZSM-39 into ZSM-23“, in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, R. von Ballmoos, J. B. Higgins, und M. M. J. Treacy, Hrsg., in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992. Butterworth-Heinemann, 1993, S. 287–295.
    10. M. Baerns und J. Weitkamp, Hrsg., Proceedings of the DGMK-Conference „Selective Hydrogenations and Dehydrogenations“ on November 11-12, 1993 in Kassel/Germany, Nr. 9305. in Tagungsbericht. DGMK, 1993.
  32. 1992

    1. B. Zibrowius, E. Löffler, und M. Hunger, „Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves“, Zeolites, Bd. 12, Nr. 2, Art. Nr. 2, 1992, doi: 10.1016/0144-2449(92)90079-5.
    2. J. Weitkamp, R. Schumacher, und U. Weiß, „Hydrothermalsynthese und Charakterisierung von Zeolith EMT“, Chemie - Ingenieur - Technik, Bd. 64, Nr. 12, Art. Nr. 12, 1992, doi: 10.1002/cite.330641212.
    3. J. Weitkamp, T. Kromminga, und S. Ernst, „Eduktselektive katalytische Hydrierung als Test für die Position von Edelmetallen auf Zeolithen“, Chemie - Ingenieur - Technik, Bd. 64, Nr. 12, Art. Nr. 12, 1992, doi: 10.1002/cite.330641213.
    4. J. Weitkamp, M. Fritz, und S. Ernst, „Zeolithe als Speichermaterialien für Wasserstoff“, Chemie - Ingenieur - Technik, Bd. 64, Nr. 12, Art. Nr. 12, 1992, doi: 10.1002/cite.330641211.
    5. J. Weitkamp und S. Ernst, „Isobutane/olefin alkylation of solid catalysts“, in Processing and products, in Processing and products, vol. 3. Wiley, 1992, S. 315–318.
    6. H. Stach u. a., „Mordenite acidity“, The journal of physical chemistry, Bd. 96, Nr. 21, Art. Nr. 21, 1992, doi: 10.1021/j100200a050.
    7. J. Kärger, H. Pfeifer, T. Wutscherk, S. Ernst, J. Weitkamp, und J. Fraissard, „Direct observation of intracrystalline transport diffusion in zeolites by xenon-129 NMR“, The journal of physical chemistry, Bd. 96, Nr. 12, Art. Nr. 12, 1992, doi: 10.1021/j100191a059.
    8. J. Kärger, M. Petzold, H. Pfeifer, S. Ernst, und J. Weitkamp, „Single-file diffusion and reaction in zeolites“, Journal of catalysis, Bd. 136, Nr. 2, Art. Nr. 2, 1992, doi: https://doi.org/10.1016/0021-9517(92)90062-M.
    9. M. Hunger, D. Freude, D. Fenzke, und H. Pfeifer, „1H solid-state NMR studies of the geometry of Bronsted acid sites in zeolites H-ZSM-5“, Chemical physics letters, Bd. 191, Nr. 5, Art. Nr. 5, 1992, doi: 10.1016/0009-2614(92)85397-S.
    10. C. A. Fyfe, H. Grondey, Y. Feng, G. T. Kokotailo, S. Ernst, und J. Weitkamp, „Two-dimensional solid-state 29Si n.m.r. investigation of the three-dimensional bonding connectivities and structure of zeolite ZSM-23“, Zeolites, Bd. 12, Nr. 1, Art. Nr. 1, 1992, doi: 10.1016/0144-2449(92)90009-E.
    11. M. Baerns und J. Weitkamp, Hrsg., Proceedings of the DGMK Conference „Selective Oxidations in Petrochemistry“, Nr. 92,4. in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle. DGMK, 1992.
  33. 1991

    1. B. Zibrowius, E. Löffler, G. Finger, E. Sonntag, M. Hunger, und J. Kornatowski, „Incorporation of silicon into the framework of SAPO-5 studied by NMR and IR spectroscopy“, Bd. 65, S. 537–548, 1991.
    2. J. Weitkamp, M. Schwark, und S. Ernst, „Removal of thiophene impurities from benzene by selective adsorption in zeolite ZSM-5“, Nr. 16, Art. Nr. 16, 1991, doi: 10.1039/C39910001133.
    3. J. Weitkamp, K. Schäfer, und S. Ernst, „Selective adsorption of diastereomers in zeolites“, Bd. 1991, S. 1142–1143, 1991.
    4. J. Weitkamp und M. Neuber, „Shape-selective reactions of alkylnaphthalenes in zeolite catalysts“, in Chemistry of microporous crystals, T. Inui, Hrsg., in Chemistry of microporous crystals. Elsevier, 1991, S. 291–301.
    5. J. Weitkamp, S. Ernst, B. Günzel, und W.-D. Deckwer, „Separation of gaseous water/ethanol mixtures by adsorption on hydrophobic zeolites“, Zeolites, Bd. 11, Nr. 4, Art. Nr. 4, 1991, doi: 10.1016/0144-2449(91)80293-9.
    6. J. Weitkamp, S. Ernst, H.-J. Buysch, und D. Lindner, „Synthesis of piperazine and triethylenediamine using ZSM-5-type zeolite catalysts“, in Catalysis and adsorption by zeolites, G. Öhlmann, H. Pfeifer, und R. Fricke, Hrsg., in Catalysis and adsorption by zeolites. Elsevier, 1991, S. 297–304.
    7. J. Weitkamp und S. Ernst, „Zeolites and their use in petroleum refining“, in Chemicals in the oil industry, P. H. Ogden, Hrsg., in Chemicals in the oil industry. , London: Royal Society of Chemistry, 1991, S. 326–347.
    8. J. Weitkamp, „New directions in zeolite catalysis“, in Catalysis and adsorption by zeolites, G. Öhlmann, H. Pfeifer, und R. Fricke, Hrsg., in Catalysis and adsorption by zeolites. Elsevier, 1991, S. 21–46.
    9. M. Stöcker, K. Reksten, S. Ernst, und J. Weitkamp, „Hochauflösende elektronenmikroskopische Untersuchungen an Zeolith ZSM-20“, Chemie - Ingenieur - Technik, Bd. 63, Nr. 11, Art. Nr. 11, 1991, doi: 10.1002/cite.330631118.
    10. B. Staudte, M. Hunger, und M. Nimz, „1H MAS n.m.r. and n.i.r. studies of aluminum-exchanged ZSM-5 zeolites“, Zeolites, Bd. 11, Nr. 8, Art. Nr. 8, 1991, doi: 10.1016/S0144-2449(05)80065-X.
    11. W. Reschetilowski, B. Meier, M. Hunger, B. Unger, und K.-P. Wendlandt, „Synthese und Charakterisierung P-haltiger ZSM-5-Zeolithe“, Angewandte Chemie, Bd. 103, Nr. 6, Art. Nr. 6, 1991, doi: 10.1002/ange.19911030629.
    12. K. Reksten, M. Stöcker, S. Ernst, und J. Weitkamp, „High-resolution electron microscopy investigation of Zeolite ZSM-20“, Micron and microscopica acta, Bd. 22, Nr. 1, Art. Nr. 1, 1991, doi: 10.1016/0739-6260(91)90144-O.
    13. R. Löw, S. Ernst, A. Kiss, P. Kleinschmit, und J. Weitkamp, „Synthese und Charakterisierung der superweitporigen Alumophosphat-Molekularsiebe VPI-5 und AIPO4-8“, Chemie - Ingenieur - Technik, Bd. 63, Nr. 7, Art. Nr. 7, 1991, doi: 10.1002/cite.330630719.
    14. P. Kleinschmit und J. Weitkamp, „Zeolithe - die winzigen Riesen“, Bd. 1991, S. 52–55, 1991.
    15. A. Katzmarzyk, S. Ernst, J. Weitkamp, und H. Knözinger, „The reduction/oxidation behaviour of MnAPO-5 as studied by ESR spectroscopy“, Catalysis letters, Bd. 9, Nr. 1, Art. Nr. 1, Jan. 1991, doi: 10.1007/BF00769085.
    16. H. G. Karge, V. Dondur, und J. Weitkamp, „Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites“, The Journal of Physical Chemistry, Bd. 95, Nr. 1, Art. Nr. 1, 1991, doi: 10.1021/j100154a053.
    17. M. Hunger, D. Freude, und H. Pfeifer, „H-MAS-NMR-Untersuchungen zur Wechselwirkung von Bronsted-Zentren mit Sondenmolekülen“, in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie, in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie. DGMK, 1991, S. 147–154.
    18. M. Hunger, D. Freude, und H. Pfeifer, „Magic-angle spinning nuclear magnetic resonance studies of water molecules adsorbed on Bronsted-and Lewis-acid sites in zeolites and amorphous silica-aluminas“, Journal of the Chemical Society. Faraday transactions, Bd. 87, Nr. 4, Art. Nr. 4, 1991, doi: 10.1039/FT9918700657.
    19. D. Fenzke, M. Hunger, und H. Pfeifer, „Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups“, Journal of magnetic resonance, Bd. 95, Nr. 3, Art. Nr. 3, 1991, doi: 10.1016/0022-2364(91)90162-M.
    20. S. Ernst und J. Weitkamp, „Oxidative coupling of methane“, in Proceedings of the Natural Gas Conversion Symposium, A. Holmen, Hrsg., in Proceedings of the Natural Gas Conversion Symposium. Elsevier, 1991, S. 25–31.
    21. S. Ernst und J. Weitkamp, „Zeolite ZSM-57“, in Catalysis and adsorption by zeolites, G. Öhlmann, H. Pfeifer, und R. Fricke, Hrsg., in Catalysis and adsorption by zeolites. Elsevier, 1991, S. 645–652.
    22. S. Ernst und J. Weitkamp, „Hydrothermalsynthese des Zeoliths ZSM-58 und templatfreie Synthese von Zeolith ZSM-5“, Chemie - Ingenieur - Technik, Bd. 63, Nr. 7, Art. Nr. 7, 1991, doi: 10.1002/cite.330630720.
    23. S. Ernst, M. Schwark, und J. Weitkamp, „Erhöhung der Octanzahl von Leichtbenzin durch Isomerisieren an bifunktionellen Zeolith-Katalysatoren“, in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie, in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie. DGMK, 1991, S. 181–190.
    24. H. Ernst, D. Freude, M. Hunger, und H. Pfeifer, „Multinuclear MAS NMR studies on coked zeolites H-ZSM-5“, Bd. 65, S. 397–404, 1991.
    25. E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, und H. Pfeifer, „Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5“, Journal of catalysis, Bd. 127, Nr. 1, Art. Nr. 1, 1991, doi: 10.1016/0021-9517(91)90206-J.
    26. E. Brunner, D. Freude, M. Hunger, H. Pfeifer, und B. Staudte, „Magic-angle-spinning nuclear magnetic resonance and infrared studies on modified zeolites“, in Zeolite chemistry and catalysis, P. A. Jacobs, N. I. Jaeger, L. Kubelková, und B. Wichterlov, Hrsg., in Zeolite chemistry and catalysis. Elsevier, 1991, S. 453–459. doi: 10.1016/S0167-2991(08)61600-6.
    27. C. H. Berke, A. Kiss, P. Kleinschmit, und J. Weitkamp, „Der Hydrophobizitäts-Index“, Chemie - Ingenieur - Technik, Bd. 63, Nr. 6, Art. Nr. 6, 1991, doi: 10.1002/cite.330630618.
  34. 1990

    1. J. Weitkamp, D. Lindner, und S. Ernst, „Hydrothermalsynthese und Charakterisierung von Zeolith-Katalysatoren für organische Synthesen“, in Veröffentlichung der Vorträge anlässlich des BMFT-Statusseminars „Katalyseforschung“, Berlin, March 1, 1990, Projektträgerschaft Material- und Rohstofforschung, in Veröffentlichung der Vorträge anlässlich des BMFT-Statusseminars „Katalyseforschung“, Berlin, March 1, 1990, Projektträgerschaft Material- und Rohstofforschung. Forschungszentrum Jülich, 1990, S. 49–60.
    2. J. Weitkamp und S. Ernst, „Möglichkeiten und Grenzen des formselektiven Hydrocrackens an Zeolith-Katalysatoren“, in Vorträge der DGMK-Haupttagung 1990 vom 19. bis 21. September in Münster/W, in Vorträge der DGMK-Haupttagung 1990 vom 19. bis 21. September in Münster/W. DGMK, 1990, S. 263–273.
    3. J. Weitkamp und S. Ernst, „Factors influencing the selectivity of hydrocracking in zeolites“, in Guidelines for mastering the properties of molecular sieves, in Guidelines for mastering the properties of molecular sieves. Plenum Press, 1990, S. 343–354.
    4. M. Stöcker, S. Ernst, H. G. Karge, und J. Weitkamp, „29Si-MAS NMR studies of hydrothermal dealumination of zeolite ZSM-20“, Bd. 44, S. 519–521, 1990.
    5. M. Hunger, D. Freude, H. Pfeifer, und W. Schwieger, „MAS NMR studies of silanol groups in zeolites ZSM-5 synthesized with an ionic template“, Chemical physics letters, Bd. 167, Nr. 1, Art. Nr. 1, 1990, doi: 10.1016/0009-2614(90)85064-J.
    6. B. Hunger, J. Hoffmann, O. Heitzsch, und M. Hunger, „Temperature-programmed desorption (TPD) of ammonia from HZSM-5 zeolites“, Journal of thermal analysis, Bd. 36, Nr. 4, Art. Nr. 4, Juli 1990, doi: 10.1007/BF01914061.
    7. B. Günzel, C. H. Berke, S. Ernst, J. Weitkamp, und W.-D. Deckwer, „Adsorption von Diolen aus Fermentationsmedien an hydrophobe Zeolithe“, Chemie - Ingenieur - Technik, Bd. 62, Nr. 9, Art. Nr. 9, 1990, doi: 10.1002/cite.330620912.
    8. S. Ernst, D. Lindner, und J. Weitkamp, „Zeolithische Eisen- und Gallosilikate als Katalysatoren für die Synthese von organischen Stickstoffbasen“, in Vorträge der DGMK-Haupttagung 1990 vom 19. bis 21. September in Münster/W, in Vorträge der DGMK-Haupttagung 1990 vom 19. bis 21. September in Münster/W. DGMK, 1990, S. 581–592.
    9. J. Caro u. a., „NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid“, Journal of catalysis, Bd. 124, Nr. 2, Art. Nr. 2, 1990, doi: 10.1016/0021-9517(90)90185-M.
  35. 1989

    1. J. Weitkamp, Chen. C. Y., und S. Ernst, „Characterization of zeolites by the spaciousness index“, in Successful design of catalysts, T. Inui, Hrsg., in Successful design of catalysts. Amsterdam: Elsevier, 1989, S. 343–350.
    2. J. Weitkamp, M. Schwark, und S. Ernst, „Adsorptive Trennung von 1- und 2-Methylnaphthalin an Zeolithen“, Chemie - Ingenieur - Technik, Bd. 61, Nr. 11, Art. Nr. 11, 1989, doi: 10.1002/cite.330611108.
    3. J. Weitkamp, M. Sakuth, C.-Y. Chen, und S. Ernst, „Dealumination of zeolite beta using (NH4)2SiF6 and SiCl4“, Journal of the Chemical Society. Chemical communications, Nr. 24, Art. Nr. 24, 1989, doi: 10.1039/C39890001908.
    4. J. Weitkamp und M. Neuber, „Zeolites as catalysts in alkylation“, in Catalysis, concepts and applications, B. Viswanathan, Hrsg., in Catalysis, concepts and applications. Tata McGraw-Hill Pub. Co., 1989, S. INV 1-1-INV 1-12.
    5. J. Weitkamp, R. Kumar, und S. Ernst, „Zeolith Beta“, Chemie - Ingenieur - Technik, Bd. 61, Nr. 9, Art. Nr. 9, 1989, doi: 10.1002/cite.330610913.
    6. J. Weitkamp, S. Ernst, und C. Y. Chen, „The spaciousness index“, in Studies in surface science and catalysis, P. A. Jacobs, Hrsg., in Studies in surface science and catalysis, vol. B. Elsevier, 1989, S. 1115–1129.
    7. N. Van-Den-Begin, L. V. C. Rees, J. Caro, M. Bülow, M. Hunger, und J. Kärger, „Diffusion of ethane in silicalite-1 by frequency response, sorption uptake and nuclear magnetic resonance techniques“, Journal of the Chemical Society. Faraday transactions. 1, Physical chemistry in condensed phases, Bd. 85, Nr. 6, Art. Nr. 6, 1989, doi: 10.1039/F19898501501.
    8. F. Roessner, K.-H. Steinberg, D. Freude, M. Hunger, und H. Pfeifer, „Nmr and Ir studies of zeolites of the erionite type“, in Zeolites as catalysts, sorbents and detergent builders, H. G. Karge und J. Weitkamp, Hrsg., in Zeolites as catalysts, sorbents and detergent builders. Elsevier, 1989, S. 421–427. doi: 10.1016/S0167-2991(08)60998-2.
    9. W. Reschetilowski u. a., „Magic-angle-spinning nuclear magnetic resonance and adsorption studies of dealumination and realumination of zeolite ZSM-5“, Applied catalysis, Bd. 56, Nr. 1, Art. Nr. 1, 1989, doi: 10.1016/S0166-9834(00)80151-7.
    10. M. Neuber und J. Weitkamp, „Shape selectivity at the external surface - a useful concept in zeolite catalysis?“, in Zeolites for the nineties, J. C. Jansen, L. Moscou, und M. F. M. Post, Hrsg., in Zeolites for the nineties. 1989, S. 425–426.
    11. J. Klinowski, H. Hamdan, A. Corma, V. Fornes, M. Hunger, und D. Freude, „1H mas NMR and IR studies of the acidic properties of realuminated zeolite Y“, Catalysis letters, Bd. 3, Nr. 3, Art. Nr. 3, Mai 1989, doi: 10.1007/BF00766402.
    12. H. G. Karge und J. Weitkamp, Hrsg., Zeolites as catalysts, sorbents and detergent builders, Nr. 46. in Studies in surface science and catalysis. Elsevier, 1989.
    13. M. Hunger, D. Freude, H. Pfeifer, D. Prager, und W. Reschetilowski, „Proton MAS NMR studies of hydroxyl groups in alkaline earth cation-exchanged zeolite Y“, Chemical physics letters, Bd. 163, Nr. 2, Art. Nr. 2, 1989, doi: 10.1016/0009-2614(89)80039-9.
    14. B. Günzel, J. Weitkamp, S. Ernst, M. Neuber, und W.-D. Deckwer, „Adsorption von Wasser/Alkohol-Gemischen aus der Gasphase an hydrophoben Zeolithen“, Chemie - Ingenieur - Technik, Bd. 61, Nr. 1, Art. Nr. 1, 1989, doi: 10.1002/cite.330610115.
    15. V. Fulop, G. Borbely, H. K. Beyer, S. Ernst, und J. Weitkamp, „Physico-chemical characterization and framework topology of zeolite ZSM-20“, Journal of the Chemical Society. Faraday transactions, Bd. 85, Nr. 8, Art. Nr. 8, 1989, doi: 10.1039/F19898502127.
    16. S. Ernst, J. Weitkamp, J. A. Martens, und P. A. Jacobs, „Synthesis and shape-selective properties of ZSM-22“, Applied catalysis, Bd. 48, Nr. 1, Art. Nr. 1, 1989, doi: 10.1016/S0166-9834(00)80271-7.
    17. S. Ernst, L. Puppe, und J. Weitkamp, „Synthesis and characterization of CoAPO and CoAPSO molecular sieves“, in Studies in surface science and catalysis, P. A. Jacobs, Hrsg., in Studies in surface science and catalysis, vol. A. Elsevier, 1989, S. 447–458.
    18. S. Ernst, R. Kumar, und J. Weitkamp, „Zeolite beta“, in Catalysis, concepts and applications, B. Viswanathan, Hrsg., in Catalysis, concepts and applications. Tata McGraw-Hill Pub. Co., 1989, S. OR 11-1-OR 11-11.
    19. S. Ernst, R. Kumar, und J. Weitkamp, „Studies on the kinetics of ZSM-23 crystallization“, in Zeolite synthesis, M. L. Occelli, Hrsg., in Zeolite synthesis. American Chemical Society, 1989, S. 560–573.
    20. S. Ernst, R. Kumar, und J. Weitkamp, „Synthesis and characterization of pyrrolidine-ZSM-51“, in Zeolites for the nineties, J. C. Jansen, L. Moscou, und M. F. M. Post, Hrsg., in Zeolites for the nineties. 1989, S. 45–46.
    21. S. Ernst, C. Y. Chen, D. Lindner, und J. Weitkamp, „Synthesis and characterization of B-, Al-, Ga- and Fe-silicates with the ZSM-58 framework“, in Zeolites for the nineties, J. C. Jansen, L. Moscou, und M. F. M. Post, Hrsg., in Zeolites for the nineties. 1989, S. 55–56.
    22. J. Caro u. a., „NMR characterization of zeolite H-ZSM-5 after post-synthesis modification with H3PO4“, in Recent Advances in Zeolite Science, J. Klinowski und P. J. Barrie, Hrsg., in Recent Advances in Zeolite Science. Amsterdam: Elsevier, 1989, S. 295–304. doi: 10.1016/S0167-2991(08)60534-0.
    23. E. Brunner u. a., „Solid-state n.m.r. and catalytic studies of mildly hydrothermally dealuminated HZSM-5“, Zeolites, Bd. 9, Nr. 4, Art. Nr. 4, 1989, doi: 10.1016/0144-2449(89)90072-9.
    24. E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, und H. Pfeifer, „MAS NMR studies on superacid sites“, in Studies in surface science and catalysis, P. A. Jacobs und R. A. van Santen, Hrsg., in Studies in surface science and catalysis, vol. A. Elsevier, 1989, S. 623–632. doi: 10.1016/S0167-2991(08)61760-7.
  36. 1988

    1. J. Weitkamp und S. Ernst, „Shape-selective hydroconversion of hydrocarbons“, in Catalysis 1987, J. W. Ward, Hrsg., in Catalysis 1987. Elsevier, 1988, S. 367–382.
    2. J. Weitkamp und S. Ernst, „Probing the shape selective properties of zeolites by catalytic hydrocarbon reactions“, Catalysis today, Bd. 3, Nr. 5, Art. Nr. 5, 1988, doi: 10.1016/0920-5861(88)87028-7.
    3. J. Weitkamp und H. Dauns, „Generation of multicomponent gas mixtures in catalytic flow-type units“, Applied catalysis, Bd. 38, Nr. 1, Art. Nr. 1, 1988, doi: 10.1016/S0166-9834(00)80995-1.
    4. J. Weitkamp, „Critical evaluation of catalytic testing of zeolites“, in Innovation in zeolite materials science, P. J. Grobet, Hrsg., in Innovation in zeolite materials science. Elsevier, 1988, S. 515–534.
    5. J. Weitkamp, Grundlagen des simultanen katalytischen Entmetallisierens und Entschwefelns von Schwerölen, Nr. 354. in Bericht / DGMK, Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. Hamburg: DGMK, 1988.
    6. J. Völter, J. Caro, M. Bülow, B. Fahlke, J. Kärger, und M. Hunger, „Diffusion, cracking and coking on HZSM-5 of various morphologies“, Applied catalysis, Bd. 42, Nr. 1, Art. Nr. 1, 1988, doi: 10.1016/S0166-9834(00)80072-X.
    7. M. Neuber, H. G. Karge, und J. Weitkamp, „I.R. spectroscopic characterization of zeolite catalysts for the shape selective conversion of polynuclear aromatics“, in Catalysis today, in Catalysis today, vol. 3. 1988, S. 11–22. doi: 10.1016/0920-5861(88)80014-2.
    8. M. Neuber, V. Dondur, H. G. Karge, L. Pacheco, S. Ernst, und J. Weitkamp, „Spectroscopic and catalytic characterization of faujasites dealuminated via the (NH4)2SiF6 method“, in Innovation in zeolite materials science, P. J. Grobet, Hrsg., in Innovation in zeolite materials science. Elsevier, 1988, S. 461–469.
    9. J. Kärger u. a., „NMR investigations on molecular transport in ZSM-5 type zeolites containing structural defects“, Catalysis today, Bd. 3, Nr. 5, Art. Nr. 5, 1988, doi: 10.1016/0920-5861(88)87033-0.
    10. R. Kumar, S. Ernst, G. T. Kokotailo, und J. Weitkamp, „Probing the shape-selective properties of zeolites ZSM-12 and EU-1 by catalytic test reactions“, in Innovation in zeolite materials science, P. J. Grobet, Hrsg., in Innovation in zeolite materials science. Elsevier, 1988, S. 451–459.
    11. M. Hunger, D. Freude, und H. Pfeifer, „1H MAS studies of acid sites in ZSM-5 type zeolites“, Catalysis today, Bd. 3, Nr. 5, Art. Nr. 5, 1988, doi: https://doi.org/10.1016/0920-5861(88)87035-4.
    12. D. Freude, H. Ernst, M. Hunger, H. Pfeifer, und E. Jahn, „Magic-angle-spinning NMR studies of zeolite SAPO-5“, Chemical physics letters, Bd. 143, Nr. 5, Art. Nr. 5, 1988, doi: 10.1016/0009-2614(88)87399-8.
    13. S. Ernst und J. Weitkamp, „Oxidative coupling of methane using zeolite-based catalysts“, in Hydrocarbons - source of energy, in Hydrocarbons - source of energy. Commission of the European Communities, 1988, S. 413–421.
    14. S. Ernst, R. Kumar, und J. Weitkamp, „Synthesis and catalytic properties of zeolite ZSM-23“, in Catalysis today, in Catalysis today, vol. 3. 1988, S. 1–10. doi: 10.1016/0920-5861(88)80013-0.
    15. S. Ernst, R. Kumar, M. Neuber, und J. Weitkamp, „Characterization of the effective pore width of molecular sieve solids by means of catalytic test reactions“, in Characterization of porous solids, K. K. Unger, Hrsg., in Characterization of porous solids. Elsevier, 1988, S. 531–540.
    16. S. Ernst, G. T. Kokotailo, und J. Weitkamp, „Factors influencing the synthesis of zeolite ZSM-20“, in Innovation in zeolite materials science, P. J. Grobet, Hrsg., in Innovation in zeolite materials science. Elsevier, 1988, S. 29–36.
    17. S. Ernst, G. T. Kokotailo, R. Kumar, und J. Weitkamp, „Shape-selective catalysis in zeolites ZSM-22 and ZSM-23“, in Catalysis, theory to practice, M. J. Phillips, Hrsg., in Catalysis, theory to practice. Chemical Institute of Canada, 1988, S. 388–395.
    18. E. Brunner, D. Freude, M. Hunger, H. Pfeifer, W. Reschetilowski, und B. Unger, „MAS NMR and IR studies on ZSM-5-type boroaluminozeolites“, Chemical physics letters, Bd. 148, Nr. 2, Art. Nr. 2, 1988, doi: 10.1016/0009-2614(88)80304-X.
    19. E. Brunner, H. Ernst, D. Freude, M. Hunger, und H. Pfeifer, „Characterization of zeolites by magic-angle spinning NMR“, in Innovation in zeolite materials science, P. J. Grobet, Hrsg., in Innovation in zeolite materials science. Elsevier, 1988, S. 155–165.
  37. 1987

    1. J. Weitkamp und S. Maixner, „Isobutane/butene alkylation on a LaNaY zeolite“, Zeolites, Bd. 7, Nr. 1, Art. Nr. 1, 1987, doi: 10.1016/0144-2449(87)90109-6.
    2. J. Weitkamp, S. Ernst, und R. Kumar, „Zeolith ZSM-12“, Chemie - Ingenieur - Technik, Bd. 59, Nr. 2, Art. Nr. 2, 1987, doi: 10.1002/cite.330590211.
    3. J. Weitkamp und S. Ernst, „Charakterisierung von formselektiven Zeolithen im Routinebetrieb“, in Fortschritte in der Katalyseforschung, B. Kurze, Hrsg., in Fortschritte in der Katalyseforschung. 1987, S. 21–44.
    4. J. Weitkamp und H. Dauns, „Hydrieraktivität und Aciditäbifunktioneller Katalysatoren“, Bd. 40, S. 111–114, 1987.
    5. M. Neuber u. a., „Carbonaceous deposits formed on zeolites H-Y, H-ZSM-20 and H-beta during the conversion of polynuclear aromatics“, in Catalyst deactivation 1987, B. Delmon, Hrsg., in Catalyst deactivation 1987. Elsevier, 1987, S. 567–577.
    6. U. Lohse, E. Löffler, M. Hunger, J. Stöckner, und V. Patzelová, „Hydroxyl groups of the non-framework aluminium species in dealuminated Y zeolites“, Zeolites, Bd. 7, Nr. 1, Art. Nr. 1, 1987, doi: 10.1016/0144-2449(87)90111-4.
    7. W. W. Irion, A. Marhold, und J. Weitkamp, „Ergebnisse des 12. Welt-Erdöl-Kongresses: Raffinerietechnik und Petrochemie“, Bd. 103, S. 424–429, 1987.
    8. M. Hunger u. a., „Investigation of internal silanol groups as structural defects in ZSM-5-type zeolites“, Journal of the Chemical Society. Faraday transcations. 1, Physical chemistry in condensed phases, Bd. 83, Nr. 11, Art. Nr. 11, 1987, doi: 10.1039/F19878303459.
    9. M. Hunger, D. Freude, T. Fröhlich, H. Pfeifer, und W. Schwieger, „1H-MAS n.m.r. studies of ZSM-5 type zeolites“, Zeolites, Bd. 7, Nr. 2, Art. Nr. 2, 1987, doi: 10.1016/0144-2449(87)90068-6.
    10. D. Freude, M. Hunger, und H. Pfeifer, „Investigation of acidic properties of zeolites by MAS NMR“, Bd. 152, Nr. 1–2, Art. Nr. 1–2, 1987, doi: 10.1524/zpch.1987.152.Part_1_2.171.
    11. S. Ernst, G. T. Kokotailo, und J. Weitkamp, „Zeolite ZSM-20“, Zeolites, Bd. 7, Nr. 3, Art. Nr. 3, 1987, doi: 10.1016/0144-2449(87)90047-9.
    12. S. Ernst, P. A. Jacobs, J. A. Martens, und J. Weitkamp, „Synthesis of zeolite ZSM-12 in the system (MTEA)2O-Na2O-SiO2-Al2O3-H2O“, Zeolites, Bd. 7, Nr. 5, Art. Nr. 5, 1987, doi: 10.1016/0144-2449(87)90015-7.
    13. H. Ernst, D. Freude, M. Hunger, H. Pfeifer, und B. Seiffert, „Untersuchungen der hochauflösenden Protonenresonanz von verschiedenen Alumosilikat-Katalysatoren bei Beladung mit Ammoniak“, Bd. 268, Nr. 2, Art. Nr. 2, 1987, doi: 10.1515/zpch-1987-26841.
    14. J. Caro u. a., „Nuclear magnetic resonance self-diffusion studies of methanol-water mixtures in pentasil-type zeolites“, Journal of the Chemical Society. Faraday transcations. 1, Physical chemistry in condensed phases, Bd. 83, Nr. 6, Art. Nr. 6, 1987, doi: 10.1039/F19878301843.
  38. 1986

    1. J. Weitkamp, M. Neuber, S. Ernst, und W. Stober, „Evidence for inhibition of platinum-catalyzed hydrocarbon reactions in Na-ZSM-5“, in Seventh International Zeolite Conference, in Seventh International Zeolite Conference. Japan Association of Zeolite, 1986, S. 303–304.
    2. J. Weitkamp, S. Ernst, und R. Kumar, „The spaciousness index“, Applied catalysis, Bd. 27, Nr. 1, Art. Nr. 1, 1986, doi: 10.1016/S0166-9834(00)81058-1.
    3. J. Weitkamp, S. Ernst, P. A. Jacobs, und H. G. Karge, „ZSM-type and related zeolite catalysts in the disproportionation of ethylbenzene“, Bd. 39, S. 13–18, 1986.
    4. J. Weitkamp, S. Ernst, H. Dauns, und E. Gallei, „Formselektive Katalyse in Zeolithen“, Chemie - Ingenieur - Technik, Bd. 58, Nr. 8, Art. Nr. 8, 1986, doi: 10.1002/cite.330580803.
    5. J. Weitkamp, S. Ernst, V. Cortés-Corberén, und G. T. Kokotailo, „Zeolite ZSM-20“, in Seventh International Zeolite Conference, in Seventh International Zeolite Conference. Japan Association of Zeolite, 1986, S. 239–240.
    6. J. Weitkamp, H. K. Beyer, G. Borbély, V. Cortés-Corberén, und S. Ernst, „Isomorphe Substitution in Zeolithen“, Chemie - Ingenieur - Technik, Bd. 58, Nr. 12, Art. Nr. 12, 1986, doi: 10.1002/cite.330581211.
    7. J. A. Martens, P. A. Jacobs, und J. Weitkamp, „Attempts to rationalize the distribution of hydrocracked products. II. Relative rates of primary hydrocracking modes of long chain paraffins in open zeolites“, Applied catalysis, Bd. 20, Nr. 1, Art. Nr. 1, 1986, doi: 10.1016/0166-9834(86)80021-5.
    8. J. A. Martens, P. A. Jacobs, und J. Weitkamp, „Attempts to rationalize the distribution of hydrocracked products. I qualitative description of the primary hydrocracking modes of long chain paraffins in open zeolites“, Applied catalysis, Bd. 20, Nr. 1, Art. Nr. 1, 1986, doi: 10.1016/0166-9834(86)80020-3.
    9. S. Maixner, C. Y. Chen, P. J. Grobet, P. A. Jacobs, und J. Weitkamp, „Investigation of carbonaceous deposits on a La-Y zeolite catalyst by CP/MAS-13C-NMR spectroscopy“, in New developments in zeolite science and technology, Y. Murakami, Hrsg., in New developments in zeolite science and technology. Kodansha, 1986, S. 693–700.
    10. J. Kutscher, H. Pfeifer, M. Hunger, und J. Hellebrand, „Investigation of imbibed water in wheat grains by pulsed 1H NMR“, Bd. 34, S. 113–122, 1986.
    11. H. G. Karge und J. Weitkamp, „Untersuchungen an dealuminierten Mordenit-Katalysatoren“, Chemie - Ingenieur - Technik, Bd. 58, Nr. 12, Art. Nr. 12, 1986, doi: 10.1002/cite.330581206.
    12. K. Hedden, M. Gauß, R. Rieger, und J. Weitkamp, Hydropyrolyse von Ölen mit Wärmezufuhr durch Teilverbrennung, Nr. 86,68. in Forschungsbericht : T, Technologische Forschung und Entwicklung / Bundesministerium für Forschung und Technologie. Eggenstein-Leopoldshafen: Fachinformationszentrum Energie, Physik, Mathematik GmbH Karlsruhe, 1986.
    13. M. Gauß, K. Hedden, und J. Weitkamp, „Hydropyrolyse von Hexadecan mit Wärmezufuhr durch Teilverbrennung“, Bd. 39, S. 501–504, 1986.
    14. D. Freude, M. Hunger, H. Pfeifer, und W. Schwieger, „1H MAS NMR studies on the acidity of zeolites“, Chemical physics letters, Bd. 128, Nr. 1, Art. Nr. 1, 1986, doi: 10.1016/0009-2614(86)80146-4.
    15. H. Dauns und J. Weitkamp, „Modelluntersuchungen zum Isomerisieren und Hydrocracken von Alkan-Gemischen an einem Pd/La-Y-Zeolith-Katalysator“, in Verfahrenstechnik 1985, in Verfahrenstechnik 1985. VDI-Verlag, 1986, S. 893–900.
    16. H. Dauns, S. Ernst, und J. Weitkamp, „The influence of hydrogen sulfide in hydrocracking of n-dodecane over palladium/faujasite catalysts“, in New developments in zeolite science and technology, Y. Murakami, Hrsg., in New developments in zeolite science and technology. Kodansha, 1986, S. 787–794.
  39. 1985

    1. J. Weitkamp, W. Gerhardt, und P. A. Jacobs, „Isomerization and hydrocracking of alkanes on Pt/Ce-Y, Pt/La-Y and Pd/La-Y zeolites - bifunctional or metallic catalysis?“, in Proceedings of the International Symposium on Zeolite Catalysis, in Proceedings of the International Symposium on Zeolite Catalysis. 1985, S. 261–270.
    2. J. Weitkamp und W. Gerhardt, „Grundlagen der hydrierenden katalytischen Entmetallisierung von Mineralölen“, Bd. 38, S. 37, 1985.
    3. J. Weitkamp und S. Ernst, „Comparison of the reactions of ethylcyclohexane and 2-methylheptane on Pd/La-Y zeolite“, in Catalysis by acids and bases, B. Imelik, Hrsg., in Catalysis by acids and bases. Elsevier, 1985, S. 419–426.
    4. J. Weitkamp, „Alkylation of hydrocarbons with zeolite catalysts - commercial applications and mechanistic aspects“, in Proceedings of the International Symposium on Zeolite Catalysis, in Proceedings of the International Symposium on Zeolite Catalysis. 1985, S. 271–290.
    5. H. Pfeifer, D. Freude, und M. Hunger, „Nuclear magnetic resonance studies on the acidity of zeolites and related catalysts“, Zeolites, Bd. 5, Nr. 5, Art. Nr. 5, 1985, doi: 10.1016/0144-2449(85)90158-7.
    6. J. A. Martens, J. Weitkamp, und P. A. Jacobs, „Primary cracking modes of long-chain paraffinic hydrocarbons in open acid zeolites“, in Catalysis by acids and bases, B. Imelik, Hrsg., in Catalysis by acids and bases. Elsevier, 1985, S. 427–436.
    7. J. Leyrer, B. Vielhaber, M. I. Zaki, S. Zhuang, J. Weitkamp, und H. Knözinger, „Structure and surface properties of supported oxides“, in A special double issue containing papers presented at the Workshop on Surface Properties of Oxides, in A special double issue containing papers presented at the Workshop on Surface Properties of Oxides. 1985, S. 301–314. doi: 10.1016/0254-0584(85)90061-6.
    8. K. Hedden und J. Weitkamp, „Thermal hydrocracking of hydrocarbons“, Bd. 8, S. 271–281, 1985.
    9. S. Ernst und J. Weitkamp, „Hydrocracking of C9 through C11 naphthenes on Pd/La-Y and Pd/H-ZSM-5 zeolites“, in Proceedings of the International Symposium on Zeolite Catalysis, in Proceedings of the International Symposium on Zeolite Catalysis. 1985, S. 457–466.
  40. 1984

    1. G. Zürn, K. Kohlhase, K. Hedden, und J. Weitkamp, „Entwicklungen der Raffinerietechnik - Schmieröl, Produktspezifikation, Betriebsführung“, Bd. 37, S. 115–118, 1984.
    2. G. Zürn, K. Kohlhase, K. Hedden, und J. Weitkamp, „Entwicklungen der Raffinerietechnik: Verfahrenstechnik, Verarbeitung von Rohölen, Rückstäen und Schwerölen“, Bd. 37, S. 62–69, 1984.
    3. J. Weitkamp, P. A. Jacobs, und S. Ernst, „Shape-selective isomerization and hydrocracking of naphthenes over Pt/H-ZSM-5 zeolite“, in Structure and reactivity of modified zeolites, P. A. Jacobs, Hrsg., in Structure and reactivity of modified zeolites. Elsevier, 1984, S. 279–290.
    4. J. Weitkamp, W. Gerhardt, und D. Scholl, „Hydrodemetalation of nickel porphyrins over sulfided and reduced CoO-MoO3/?-Al2O3“, in Catalysis for reactions with synthesis gas, catalysis for upgrading crude oil, studies on the working catalyst, in Catalysis for reactions with synthesis gas, catalysis for upgrading crude oil, studies on the working catalyst, vol. 2. Verlag Chemie, 1984, S. 269–280.
    5. J. Weitkamp, S. Ernst, und H. G. Karge, „Peculiarities in the conversion of naphthenes on bifunctional catalysts“, Bd. 37, S. 457–462, 1984.
    6. J. Weitkamp und H. Dauns, „Eine neue Methode zur Dosierung gasförmiger Mehrkomponenten-Gemische in Strömungsapparaturen“, Chemie - Ingenieur - Technik, Bd. 56, Nr. 12, Art. Nr. 12, 1984, doi: 10.1002/cite.330561213.
    7. J. Weitkamp, „Isomerization and hydrogenolysis of long-chain n-alkanes over Pt/Al2O3“, in Actas do 9.o Simpósio Iberoamericano de Catálise, Lisboa 16 - 21 de julho de 1984, in Actas do 9.o Simpósio Iberoamericano de Catálise, Lisboa 16 - 21 de julho de 1984. 1984, S. 1332–1341.
    8. J. Weitkamp, Grundlagen der hydrierenden katalytischen Entmetallisierung von Mineralölen, Nr. 281. in DGMK-Bericht. Hamburg: Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., 1984.
    9. J. A. Martens, M. Tielen, P. A. Jacobs, und J. Weitkamp, „Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane“, Zeolites, Bd. 4, Nr. 2, Art. Nr. 2, 1984, doi: https://doi.org/10.1016/0144-2449(84)90044-7.
    10. H. G. Karge, Y. Wada, J. Weitkamp, S. Ernst, U. Girrbach, und H. K. Beyer, „A comparative study of pentasil zeolites and dealuminated mordenites as catalysts for the disproportionation of ethylbenzene“, in Catalysis on the energy scene, S. Kaliaguine und A. Mahay, Hrsg., in Catalysis on the energy scene. Elsevier, 1984, S. 101–111.
    11. H. G. Karge, Y. Wada, J. Weitkamp, und P. A. Jacobs, „Disproportionation of ethylbenzene: Reply to guisnet“, Journal of catalysis, Bd. 88, Nr. 1, Art. Nr. 1, 1984, doi: 10.1016/0021-9517(84)90075-7.
    12. K. Hedde, H. Giang toan, H. Lischer, J. T. Nickel, und J. Weitkamp, Thermisches Hydrocracken von Kohlenwasserstoffen. in Forschungsbericht / Bundesministerium für Forschung und Technologie. Energieforschung und Energietechnologie. Nichtnukleare Energietechnik. Bonn: Bundesmin. für Forschung u. Technologie, 1984.
    13. D. Freude, M. Hunger, H. Pfeifer, G. Scheler, J. Hoffmann, und W. Schmitz, „Highly resolved proton magnetic resonance spectra of hydroxyl groups in hydrogen-zeolites“, Chemical physics letters, Bd. 105, Nr. 4, Art. Nr. 4, 1984, doi: 10.1016/0009-2614(84)80055-X.
  41. 1983

    1. J. Weitkamp und S. Maixner, „Die Isobutan/Olefin-Alkylierung - Verfahrenstechnik und Reaktionsmechanismus eines Raffinerieprozesses zur Erzeugung klopffester Benzinkomponenten“, Bd. 36, S. 523–529, 1983.
    2. J. Weitkamp, P. A. Jacobs, und J. A. Martens, „Isomerization and hydrocracking of C9 through C16 n-alkanes on Pt/HZSM-5 zeolite“, Applied catalysis, Bd. 8, Nr. 1, Art. Nr. 1, 1983, doi: 10.1016/0166-9834(83)80058-X.
    3. J. Weitkamp und P. A. Jacobs, „Hydroconversion of long-chain n-alkanes on Pt/H-ZSM-5 zeolite“, Bd. 28, Nr. 2, Art. Nr. 2, 1983.
    4. J. Weitkamp, W. Gerhardt, R. Rigoni, und H. Dauns, „Modelluntersuchungen zum hydrierenden katalytischen Entmetallisieren bei niedrigen Temperaturen“, Bd. 36, S. 569–587, 1983.
    5. H. G. Karge, Z. Sarbak, K. Hatada, J. Weitkamp, und P. A. Jacobs, „Disproportionation of ethylbenzene: A potential test reaction for acidity of bifunctional zeolite catalysts“, Journal of catalysis, Bd. 82, Nr. 1, Art. Nr. 1, 1983, doi: 10.1016/0021-9517(83)90135-5.
    6. M. Hunger, D. Freude, H. Pfeifer, H. Bremer, M. Jank, und K. P. Wendlandt, „High-resolution proton magnetic resonance and catalytic studies concerning Bronsted centers of amorphous Al2O3-SiO2 solids“, Chemical physics letters, Bd. 100, Nr. 1, Art. Nr. 1, 1983, doi: 10.1016/0009-2614(83)87256-X.
    7. K. Hedden und J. Weitkamp, „Thermisches Hydrocracken von Kohlenwasserstoffen“, Chemie - Ingenieur - Technik, Bd. 55, Nr. 12, Art. Nr. 12, 1983, doi: 10.1002/cite.330551202.
    8. D. Freude, T. Fröhlich, M. Hunger, H. Pfeifer, und G. Scheler, „NMR studies concerning the dehydroxylation of zeolites HY“, Chemical physics letters, Bd. 98, Nr. 3, Art. Nr. 3, 1983, doi: 10.1016/0009-2614(83)87162-0.
  42. 1982

    1. J. Weitkamp, W. Gerhardt, und H. Dauns, „Hydrierendes Entmetallisieren eines Nickel-Porphyrins an CoMo-Al2O3“, in Compendium 82/83 - Vorträge der 27. DGMK-Haupttagung, in Compendium 82/83 - Vorträge der 27. DGMK-Haupttagung. Industrieverl. von Hernhaussen, 1982, S. 207–208.
    2. J. Weitkamp, „Fortschritte und Entwicklungstendenzen beim katalytischen Cracken“, Bd. 11, S. 707–712, 1982.
    3. J. Weitkamp, „Gewinnung leichter Kohlenwasserstoffe aus schweren Ölen - Verfahren und Entwicklungen“, Chemie - Ingenieur - Technik, Bd. 54, Nr. 2, Art. Nr. 2, 1982, doi: 10.1002/cite.330540205.
    4. J. Weitkamp, „Entwicklung der Verarbeitungsverfahren für schwere Rohöle und Teersande“, Bd. 35, S. 460–466, 1982.
    5. J. Weitkamp, „Isomerization of long-chain n-alkanes on a Pt/CaY zeolite catalyst“, Industrial and engineering chemistry. Product research and development, Bd. 21, Nr. 4, Art. Nr. 4, 1982, doi: 10.1021/i300008a008.
    6. D. Freude, M. Hunger, und H. Pfeifer, „Study of Bronsted acidity of zeolites using high-resolution proton magnetic resonance with magic-angle spinning“, Chemical physics letters, Bd. 91, Nr. 4, Art. Nr. 4, 1982, doi: 10.1016/0009-2614(82)80162-0.
  43. 1981

    1. J. Weitkamp und P. A. Jacobs, „Isomerization and hydrocracking of long-chain alkanes“, Bd. 26, S. 9–13, 1981.
    2. J. Weitkamp, „New evidence for a protonated cyclopropane mechanism in catalytic isomerization of n-alkanes“, in Studies in surface science and catalysis, T. Seiyama, Hrsg., in Studies in surface science and catalysis, vol. B. Kodansha, 1981, S. 1404–1405.
    3. M. Steijns, G. Froment, P. Jacobs, J. Uytterhaeven, und J. Weitkamp, „Hydroisomerization and hydrocracking. 2. Product distributions from n-decane and n-dodecane“, Industrial and engineering chemistry. Product research and development, Bd. 20, Nr. 4, Art. Nr. 4, 1981, doi: 10.1021/i300004a013.
    4. P. A. Jacobs, J. A. Martens, J. Weitkamp, und H. K. Beyer, „Shape-selectivity changes in high-silica zeolites“, Faraday discussions of the Chemical Society, Bd. 72, S. 353–369, 1981, doi: 10.1039/DC9817200353.
    5. P. A. Jacobs, E. G. Derouane, und J. Weitkamp, „Evidence for X-ray-amorphous zeolites“, Journal of the Chemical Society.  Chemical communications, Nr. 12, Art. Nr. 12, 1981, doi: 10.1039/C39810000591.
  44. 1980

    1. J. Weitkamp und E. Edye, „Stand und Aussichten der Verarbeitungstechnik für Mineralöl und Erdgas“, Bd. 33, S. 16–33, 1980.
    2. J. Weitkamp, „Isobutane/butene alkylation on cerium-exchanged X and Y zeolites“, in Catalysis by zeolites, B. Imelik, Hrsg., in Catalysis by zeolites. Elsevier, 1980, S. 65–75.
    3. J. Weitkamp, „Alkylieren von Isobutan mit 1-Buten an unbehandelten und mit AlCl3 modifizierten Ionenaustauscherharzen“, in Compendium 80/81 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK, in Compendium 80/81 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK. Industrieverl. von Hernhaussen, 1980, S. 71–72.
    4. J. Weitkamp, „Isoalkane/alkene alkylation and alkene oligomerization on zeolites. 1. Time-on-stream effects with isobutane/cis-2-butene on CeY“, in Proceedings of the Fifth International Conference on Zeolites, L. V. C. Rees, Hrsg., in Proceedings of the Fifth International Conference on Zeolites. Heyden, 1980, S. 858–865.
    5. P. A. Jacobs, J. B. Uytterhoeven, M. Steijns, G. Froment, und J. Weitkamp, „Hydroisomerization and hydrocracking. 1. Comparison of the reactions of n-decane over ultrastable Y and ZSM-5 zeolites containing platinum“, in Proceedings of the Fifth International Conference on Zeolites, L. V. C. Rees, Hrsg., in Proceedings of the Fifth International Conference on Zeolites. Heyden, 1980, S. 607–615.
    6. K. Hedden, H. Lischer, und J. Weitkamp, „Untersuchungen zum thermischen Hydrocracken mit n-Dodecan als Modellkohlenwasserstoff“, in Compendium 80/81 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK, in Compendium 80/81 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK. Industrieverl. von Hernhaussen, 1980, S. 73–75.
  45. 1978

    1. J. Weitkamp und H. Farag, „Isomerization of the methylnonanes and 2-methyloctane on a bifunctional zeolite catalyst“, in Proceedings of the Symposium on Zeolites, in Proceedings of the Symposium on Zeolites. 1978, S. 327–333.
    2. J. Weitkamp, „Alkylieren und Polymerisieren bei der Umsetzung flüssiger Gemische aus Isobutan und Buten-(1) an Y-Zeolithen“, in Compendium 78/79 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK, in Compendium 78/79 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK. Industrieverl. von Hernhaussen, 1978, S. 525–550.
    3. J. Weitkamp, „Hydrocracken, Cracken und Isomerisieren von Kohlenwasserstoffen“, Bd. 31, S. 13–22, 1978.
    4. M. Steijns, G. Froment, P. A. Jacobs, J. B. Uytterhoeven, und J. Weitkamp, „Ultrastable zeolites as catalysts for hydrocracking n-decane“, Bd. 31, S. 581, 1978.
  46. 1977

    1. J. Weitkamp und H. Farag, „Katalytisches Isomerisieren langkettiger n-Alkane“, Bd. 30, S. 275, 1977.
    2. J. Weitkamp, „Hydrocracken, Cracken und Isomerisieren von Kohlenwasserstoffen“, in Compendium 77/78 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK, in Compendium 77/78 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK. Industrieverl. von Hernhaussen, 1977, S. 24–47.
  47. 1976

    1. J. Weitkamp und H. Schulz, „Hydrocracken von n- Paraffinen an Edelmetall/Zeolith-Katalysatoren - Einfluss des Druckes“, in Compendium 74/75 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK, in Compendium 74/75 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK. Industrieverl. von Hernhaussen, 1976, S. 355–366.
    2. J. Weitkamp und H. Farag, „Katalytisches Isomerisieren langkettiger n-Alkane“, in Compendium 76/77 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK, in Compendium 76/77 / Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., DGMK. Industrieverl. von Hernhaussen, 1976, S. 276–292.
  48. 1975

    1. J. Weitkamp und H. Schulz, „Hydrocracken von n- Paraffinen an Edelmetall/Zeolith-Katalysatoren - Einfluss des Druckes“, Bd. 28, S. 37, 1975.
    2. J. Weitkamp und K. Hedden, „Reaktionsablauf beim Hydrocracken von n-Alkanen an Edelmetall/Zeolith-Katalysatoren“, Chemie - Ingenieur - Technik, Bd. 47, Nr. 12, Art. Nr. 12, 1975, doi: 10.1002/cite.330471209.
    3. J. Weitkamp, „The influence of chain length in hydrocracking and hydroisomerization of n-alkanes“, Preprints / American Chemical Society, Division of Petroleum Chemistry, Bd. 20, S. 489–507, 1975.
    4. K. Hedden und J. Weitkamp, „Das Hydrocracken schwerer Erdölfraktionen“, Chemie - Ingenieur - Technik, Bd. 47, Nr. 12, Art. Nr. 12, 1975, doi: 10.1002/cite.330471202.
  49. 1973

    1. J. Weitkamp und H. Schulz, „Olefinic intermediates in catalytic hydrocracking of paraffins“, Journal of catalysis, Bd. 29, Nr. 2, Art. Nr. 2, 1973, doi: 10.1016/0021-9517(73)90241-8.
    2. H. Schulz, J. Weitkamp, und Eberth. H., „New disproportionation reaction of alicyclic hydrocarbons on bifunctional catalysts in the presence of hydrogen“, gehalten auf der 5. International Congress on Catalysis, J. W. Hightower, Hrsg., North-Holland, 1973, S. 1229–1239.
  50. 1972

    1. H. F. Schulz und J. H. Weitkamp, „Zeolite catalysts - hydrocracking and hydroisomerization of n-dodecane“, Industrial and engineering chemistry. Product research and development, Bd. 11, Nr. 1, Art. Nr. 1, 1972, doi: 10.1021/i360041a007.
    2. H. Schulz und J. Weitkamp, „The formation of alkanes with quaternary carbon atoms by catalytic hydrocracking“, Preprints / American Chemical Society, Division of Petroleum Chemistry, Bd. 17, Nr. 4, Art. Nr. 4, 1972.
    3. H. Pichler, H. Schulz, H. O. Reitemeyer, und J. Weitkamp, „Über das Hydrocracken gesättigter Kohlenwasserstoffe“, Bd. 25, S. 494–505, 1972.
  51. 1971

    1. H. Schulz und J. Weitkamp, „Hydrocracking and hydroisomerization of n-dodecane on Pt- and Pd-zeolite catalysts“, Preprints / American Chemical Society, Division of Petroleum Chemistry, Bd. 16, Nr. 1, Art. Nr. 1, 1971.

Dissertationen

  1. 2023

    1. Häussermann, D. (2023). Untersuchung von aluminiumreichen Zeolithkatalysatoren ohne große Hohlräume zur Dehydratisierung von Milchsäure zu Acrylsäure [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-14042
    2. Beurer, A.-K. (2023). Efficient and spatially controlled functionalization of SBA-15 [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-13907
    3. Hildebrand, J. (2023). Untersuchung von Degradationsmechanismen an einlagigen Gasdiffusionselektroden für die elektrochemische Kohlenstoffdioxid-Reduktion [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12993
    4. Florenski, J. S. (2023). Investigation of structure-property relationships of cerium oxide-based catalysts for CO oxidation [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-13896
    5. Bentele, D. (2023). Novel test protocols and characterization techniques for OER based reversal tolerant PEFC anodes for automotive applications [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-13516
    6. Kopljar, D. (2023). Development and investigation of gas-diffusion electrodes for the electrochemical reduction of CO2 [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-13526
  2. 2022

    1. Liu, H. (2022). Exploring metal organic layer based composites for selective electrocatalytic CO2 reduction to formate [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12259
    2. Xu, C. (2022). Microporous catalysts for direct methane oxidation to oxygenates by using H2O2 as oxidant [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12283
    3. Rößner, P. (2022). Electrochemical carbon dioxide reduction to formic acid in a flow cell using molecular catalysts. In Energie & Nachhaltigkeit (Dissertation 11; Nummer 11). Cuvillier Verlag.
    4. Rieg, C. (2022). Entwicklung einer MAS-NMR-basierten Methode zur Bestimmung der Zugänglichkeit von aktiven Zentren in porösen Materialien mit Sondenmolekülen auf Phosphanbasis [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12469
    5. Li, Z. (2022). Alumination of porous silica and quantitative investigation of factors influencing water and methanol adsorption [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12470
    6. Lang, S. (2022). Modifizierung der sauren Zentren von porösen Festkörperkatalysatoren und Untersuchung der katalytischen Eigenschaften bei der Umsetzung von 2-Ethylphenol [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-12041
  3. 2021

    1. Löwe, A. (2021). Development and investigation of an efficient electrolysis process for the conversion of carbon dioxide to formate [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11462
    2. Beierlein, D. (2021). Entwicklung von hochbeladenen Nickel-Aluminiumoxid-Katalysatoren für die Erzeugung von synthetischem Erdgas durch CO2-Hydrierung [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11463
  4. 2020

    1. Himmelmann, R. (2020). Untersuchungen zur Umsetzung von Ethanol zu Ethylenoxid [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11312
    2. Weber, S. (2020). Umsetzung von CO2 und Ethen zu Na-Acrylat [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10982
    3. Mack, D. (2020). Herstellung von Acrylnitril aus biobasierter Milchsäure und Propionsäure [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10701
  5. 2019

    1. Inan, A. (2019). Experimentelle Untersuchungen zur technischen Machbarkeit der elektrochemischen CO2-Reduktion [Dissertation]. Universität Stuttgart.
    2. Neher, F. (2019). Selektivoxidation von Methan zu Methanol : Reaktionsführung im Explosionsbereich unter Verwendung von Mikrostrukturreaktoren [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10643
  6. 2018

    1. Zuo, H. (2018). Selective oxidation of methane to hydrocarbon oxygenates using H2O2 over Fe-containing MFI zeolites in a micro fixed-bed reactor [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10101
    2. Wan Hussin, D. (2018). Dehydroalkylation of benzene with mixtures of ethane and propane over zeolite catalysts [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9990
    3. Balcazar, E. (2018). Sicherheitstechnische Untersuchungen von Hotspots als potentielle Zündquelle in Mikroreaktoren [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9663
    4. Lange, T. (2018). Reaktionstechnische Untersuchung der Selektivoxidation von o-Xylol zu Phthalsäureanhydrid im Explosionsbereich unter Verwendung von Mikrostrukturreaktoren [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10449
    5. Meßner, M. (2018). Entwicklung neuer chiraler stationärer Phasen für die HPLC [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-10182
    6. Heuchel, M. (2018). Co-catalytic cracking of n-decane and 2-ethylphenol as model hydrocarbons for fossil- and bio-based feeds in FCC over zeolite catalysts [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9754
    7. Obenaus, U. (2018). Entwicklung von Methoden zur Aufklärung der Mechanismen heterogen katalysierter Hydrierreaktionen mittels In-situ-MAS-NMR-Spektroskopie [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9918
  7. 2017

    1. Otterstätter, R. (2017). Reaktionstechnische Untersuchungen zur oxidativen Veresterung von Methacrolein mit Methanol an Au/NiO-Festbettkatalysatoren [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9070
    2. Schulze, S. F. (2017). Prozessintensivierung einer anionischen Polymerisation von 1,3-Butadien in einem Kapillarreaktor [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9223
    3. Lieder, C. (2017). Eignung von metallorganischen Gerüstverbindungen als stationäre Phase in der Hochleistungsflüssigchromatographie (HPLC) [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9105
    4. Scholz, V. M. (2017). Reaktionstechnische Untersuchungen zur Direktreduktion von Acetophenon mit Wasser [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-9409
    5. Eversfield, P. (2017). Partial oxidation of o-xylene to phthalic anhydride$deffects of K, Sn and W [Dissertation]. In Verfahrenstechnik. Verlag Dr. Hut.
  8. 2016

    1. Moegle-Hofacker, F. (2016). Entwicklung eines Simulationsprogramms zur Beschreibung dynamischer Prozesse in NMR-Experimenten [Dissertation]. Universität Stuttgart.
    2. Sonntag, J. (2016). Selektive Oxidation von Cyclohexan mit molekularem Sauerstoff im Mikrostrukturreaktor : Autoxidation versus heterogene Katalyse [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-8958
  9. 2015

    1. Näfe, G. (2015). Selektive Dehydratisierung von Milchsäure zu Acrylsäure an Zeolith-Katalysatoren [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-1445
    2. Rupp, M. (2015). Über die Ethoxylierung von Octanol im Mikrostrukturreaktor [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-1457
    3. Dyballa, M. (2015). Die Entwicklung neuer Zeolithkatalysatoren für die Methanol-zu-Olefin-Umsetzung [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-1450
    4. Prasetyo, E. (2015). Development of heterogenized catalyst systems for the synthesis of acrylic acid derivatives from carbon dioxide and ethylene [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-1454
    5. Aimer, M. (2015). Reaktivextraktion von Milchsäure [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-1463
  10. 1999

    1. Traa, Y. (1999). Selektive katalytische Reduktion von Stickoxiden mit Propen an edelmetallhaltigen Zeolithen [Dissertation]. Grauer.
Zum Seitenanfang