Publikationsliste des Instituts für Technische Chemie

Gesamte Publikationsliste des ITC nach Jahren geordnet

Institutionspublikationsliste

  1. 2021

    1. C. Rieg et al., “Noble metal location in porous supports determined by reaction with phosphines,” Microporous and Mesoporous Materials, vol. 310, p. 110594, 2021, doi: 10.1016/j.micromeso.2020.110594.
  2. 2020

    1. Kvande et al., “Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol,” Catalysts, vol. 10, no. 2, Art. no. 2, 2020, doi: 10.3390/catal10020191.
  3. 2019

    1. F. Ziegler et al., “Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization,” Journal of the American Chemical Society, vol. 141, no. 48, Art. no. 48, 2019, doi: 10.1021/jacs.9b08776.
    2. X. Zeng et al., “Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity,” Journal of Catalysis, vol. 380, pp. 9--20, 2019, doi: 10.1016/j.jcat.2019.09.035.
    3. L. Yang et al., “Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during Methanol Conversion,” ACS Catalysis, vol. 9, no. 7, Art. no. 7, 2019, doi: 10.1021/acscatal.9b00641.
    4. T. Yan et al., “Cascade Conversion of Acetic Acid to Isobutene over Yttrium-Modified Siliceous Beta Zeolites,” ACS Catalysis, vol. 9, no. 11, Art. no. 11, 2019, doi: 10.1021/acscatal.9b02850.
    5. Z. Wang et al., “Strongly enhanced acidity and activity of amorphous silica–alumina by formation of pentacoordinated AlV species,” Journal of Catalysis, vol. 372, pp. 1--7, 2019, doi: 10.1016/j.jcat.2019.02.007.
    6. Z. Wang et al., “High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina,” Science Bulletin, vol. 64, no. 8, Art. no. 8, 2019, doi: 10.1016/j.scib.2019.04.002.
    7. R. Rachwalik, K. Góra-Marek, Z. Olejniczak, M. Hunger, and B. Sulikowski, “Tailoring selectivity in the liquid-phase isomerization of $\upalpha$-pinene on dealuminated ferrierite-type zeolites,” Catalysis Today, 2019, doi: 10.1016/j.cattod.2019.03.045.
    8. D. K. Pappas et al., “Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy,” Topics in Catalysis, vol. 62, no. 7, Art. no. 7, 2019, doi: 10.1007/s11244-019-01160-7.
    9. D. Mack, S. Schätzle, Y. Traa, and E. Klemm, “Synthesis of Acrylonitrile from Renewable Lactic Acid,” ChemSusChem, vol. 12, no. 8, Art. no. 8, 2019.
    10. K. A. Lomachenko et al., “The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study,” Catalysis Today, vol. 336, pp. 99--108, 2019, doi: 10.1016/j.cattod.2019.01.040.
    11. K. D. Kim, Z. Wang, Y. Jiang, M. Hunger, and J. Huang, “The cooperative effect of Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the conversion of 1,3-dihydroxyacetone to ethyl lactate,” Green Chem., vol. 21, no. 12, Art. no. 12, 2019, doi: 10.1039/C9GC00820A.
    12. M. Gackowski, J. Podobiński, and M. Hunger, “Evidence for a strong polarization of n-hexane in zeolite H-ZSM-5 by FT-IR and solid-state NMR spectroscopy,” Microporous and Mesoporous Materials, vol. 273, pp. 67--72, 2019, doi: 10.1016/j.micromeso.2018.06.054.
    13. P. Eversfield, T. Lange, M. Hunger, and E. Klemm, “Selective oxidation of o-xylene to phthalic anhydride on tungsten, tin, and potassium promoted VOx on TiO2 monolayer catalysts,” Catalysis Today, vol. 333, pp. 120--126, 2019, doi: 10.1016/j.cattod.2018.04.025.
    14. M. Dyballa et al., “Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports,” Microporous and Mesoporous Materials, p. 109778, 2019, doi: 10.1016/j.micromeso.2019.109778.
    15. M. Dyballa et al., “Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol,” ChemCatChem, vol. 11, no. 20, Art. no. 20, 2019, doi: 10.1002/cctc.201901315.
    16. M. Dyballa et al., “On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion,” ACS Catalysis, vol. 9, no. 1, Art. no. 1, 2019, doi: 10.1021/acscatal.8b04437.
    17. R. Y. Brogaard et al., “Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site,” ACS Catalysis, vol. 9, no. 6, Art. no. 6, 2019, doi: 10.1021/acscatal.9b00721.
    18. E. Borfecchia et al., “Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS,” Catalysis Today, vol. 333, pp. 17--27, 2019, doi: 10.1016/j.cattod.2018.07.028.
    19. D. Beierlein et al., “Is the CO2 methanation on highly loaded Ni-Al2O3 catalysts really structure-sensitive?,” Applied Catalysis B: Environmental, vol. 247, pp. 200--219, 2019, doi: 10.1016/j.apcatb.2018.12.064.
  4. 2018

    1. E. Yuan, W. Dai, G. Wu, N. Guan, M. Hunger, and L. Li, “Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts,” Microporous and Mesoporous Materials, vol. 270, pp. 265--273, 2018, doi: 10.1016/j.micromeso.2018.05.032.
    2. T. Yan et al., “On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion,” Journal of Catalysis, vol. 367, pp. 7--15, 2018, doi: 10.1016/j.jcat.2018.08.019.
    3. T. Yan et al., “Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite,” ACS Catalysis, vol. 8, no. 4, Art. no. 4, 2018, doi: 10.1021/acscatal.8b00014.
    4. Z. Wang et al., “Acidity enhanced AlMCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to \varepsilon-caprolactam,” Journal of Catalysis, vol. 358, pp. 71--79, 2018, doi: 10.1016/j.jcat.2017.11.013.
    5. Z. Wang et al., “Identification of Vicinal Silanols and Promotion of Their Formation on MCM-41 via Ultrasonic Assisted One-Step Room-Temperature Synthesis for Beckmann Rearrangement,” Industrial & Engineering Chemistry Research, vol. 57, no. 16, Art. no. 16, 2018, doi: 10.1021/acs.iecr.8b00274.
    6. X. H. Vu, M. Hunger, U. Armbruster, and A. Martin, “Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors,” Journal of Porous Materials, vol. 25, no. 4, Art. no. 4, 2018, doi: 10.1007/s10934-017-0514-y.
    7. D. K. Pappas et al., “Understanding and Optimizing the Performance of Cu-FER for The Direct CH4 to CH3OH Conversion,” ChemCatChem, vol. 11, no. 1, Art. no. 1, 2018, doi: 10.1002/cctc.201801542.
    8. D. K. Pappas et al., “The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment,” Journal of the American Chemical Society, vol. 140, no. 45, Art. no. 45, 2018, doi: 10.1021/jacs.8b08071.
    9. Md. A. Hossain, J. Jewaratnam, A. Ramalingam, J. N. Sahu, and P. Ganesan, “A DFT method analysis for formation of hydrogen rich gas from acetic acid by steam reforming process,” FUEL, vol. 212, pp. 49–60, 2018, doi: 10.1016/j.fuel.2017.09.098.
    10. J. Holzinger et al., “Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study,” The Journal of Physical Chemistry C, vol. 123, no. 13, Art. no. 13, 2018, doi: 10.1021/acs.jpcc.8b06891.
    11. M. Heuchel, C. Dörr, R. Boldushevskii, S. Lang, E. Klemm, and Y. Traa, “The influence of porosity and active sites of zeolites Y and beta on the co-cracking of n-decane and 2-ethylphenol,” Applied catalysis. A, General, vol. 553, pp. 91–106, 2018, doi: 10.1016/j.apcata.2017.11.026.
    12. P. Hermann et al., “Optimization of a split and recombine micromixer by improved exploitation of secondary flows,” CHEMICAL ENGINEERING JOURNAL, vol. 334, pp. 1996–2003, 2018, doi: 10.1016/j.cej.2017.11.131.
    13. P. M. Hauser, M. Hunger, and M. R. Buchmeiser, “Silica-Supported Molybdenum Alkylidyne N-Heterocyclic Carbene Catalysts:    Relevance of Site Isolation to Catalytic Performance,” CHEMCATCHEM, vol. 10, no. 8, SI, Art. no. 8, SI, 2018, doi: 10.1002/cctc.201701654.
    14. M. Dyballa, U. Obenaus, M. Blum, and W. Dai, “Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance,” Catal. Sci. Technol., vol. 8, no. 17, Art. no. 17, 2018, doi: 10.1039/C8CY01032C.
    15. M. Dyballa et al., “Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane,” Microporous and Mesoporous Materials, vol. 265, pp. 112--122, 2018, doi: 10.1016/j.micromeso.2018.02.004.
    16. S. R. Docherty, D. P. Estes, and C. Copéret, “Facile Synthesis of Unsymmetrical Trialkoxysilanols: (RO)2(R′O)SiOH,” Helv. Chim. Acta, vol. 101, no. e1700298, Art. no. e1700298, 2018, doi: 10.1002/hlca.201700298.
    17. W. Dai et al., “Effect of n-Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic Interpretation,” ACS Catalysis, vol. 8, no. 2, Art. no. 2, 2018, doi: 10.1021/acscatal.7b03457.
    18. D. Beierlein, S. Schirrmeister, Y. Traa, and E. Klemm, “Experimental approach for identifying hotspots in lab-scale fixed-bed reactors exemplified by the Sabatier reaction,” Reaction kinetics and catalysis letters, 2018, doi: 10.1007/s11144-018-1402-4.
  5. 2017

    1. H. Zuo, V. Meynen, and E. Klemm, “Selective Oxidation of Methane with Hydrogen Peroxide Towards Formic Acid in a Micro Fixed-BedReactor,” CHEMIE INGENIEUR TECHNIK, vol. 89, no. 12, Art. no. 12, 2017, doi: 10.1002/cite.201600174.
    2. U. Tastan, F. Guba, and D. Ziegenbalg, “Switchable Reactions for the Investigation of Reactive Mass Transfer Processes,” CHEMICAL ENGINEERING & TECHNOLOGY, vol. 40, no. 8, SI, Art. no. 8, SI, 2017, doi: 10.1002/ceat.201600586.
    3. S. Shams, J. N. Sahu, S. M. S. Rahman, and A. Ahsan, “Sustainable waste management policy in Bangladesh for reduction of greenhouse gases,” SUSTAINABLE CITIES AND SOCIETY, vol. 33, pp. 18–26, 2017, doi: 10.1016/j.scs.2017.05.008.
    4. K. Sato and M. Hunger, “Molecular studies of Cs adsorption sites in inorganic layered materials,” ChemPhysChem, vol. 19, no. 28, Art. no. 28, 2017, doi: 10.1039/C7CP02814H.
    5. K. Sato and M. Hunger, “Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration,” Phys. Chem. Chem. Phys., vol. 19, no. 28, Art. no. 28, 2017, doi: 10.1039/C7CP02814H.
    6. D. Rojo-Gama et al., “A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5,” ACS Catalysis, vol. 7, no. 12, Art. no. 12, 2017, doi: 10.1021/acscatal.7b02193.
    7. D. K. Pappas et al., “Methane to Methanol: Structure–Activity Relationships for Cu-CHA,” Journal of the American Chemical Society, vol. 139, no. 42, Art. no. 42, 2017, doi: 10.1021/jacs.7b06472.
    8. U. Obenaus, G. Althoff-Ospelt, S. Lang, R. Himmelmann, and M. Hunger, “Separation of Anti-Phase Signals Due to Parahydrogen Induced Polarization via 2D Nutation NMR Spectroscopy,” CHEMPHYSCHEM, vol. 18, no. 5, Art. no. 5, 2017, doi: 10.1002/cphc.201601227.
    9. U. Obenaus, S. Lang, R. Himmelmann, and M. Hunger, “Parahydrogen-Induced Hyperpolarization inside Meso- and Micropores of Pt-, Rh-, Ir-, and Pd-Containing Solid Catalysts,” The Journal of Physical Chemistry C, vol. 121, no. 18, Art. no. 18, 2017, doi: 10.1021/acs.jpcc.7b01899.
    10. T. Montsch, M. Heuchel, Y. Traa, E. Klemm, and C. Stubenrauch, “Selective hydrogenation of 3-Hexyn-1-ol with Pd nanoparticles synthesized via microemulsions,” Applied catalysis. A, General, vol. 539, pp. 19–28, 2017, doi: 10.1016/j.apcata.2017.03.038.
    11. K. Latendorf, M. Mechler, I. Schamne, D. Mack, W. Frey, and R. Peters, “Titanium Salen Complexes with Appended Silver NHC Groups as Nucleophilic Carbene Reservoir for Cooperative Asymmetric Lewis Acid/NHC Catalysis,” EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, no. 28, Art. no. 28, 2017, doi: 10.1002/ejoc.201700436.
    12. S. Lang et al., “Mechanisms of the AlCl3 Modification of Siliceous Microporous and Mesoporous Catalysts Investigated by Multi-Nuclear Solid-State NMR,” Topics in Catalysis, vol. 60, no. 19, Art. no. 19, 2017, doi: 10.1007/s11244-017-0837-6.
    13. H. Koller, T. Uesbeck, M. R. Hansen, and M. Hunger, “Characterizing the First and Second 27Al Neighbors of Brønsted and Lewis Acid Protons in Zeolites and the Distribution of 27Al Quadrupolar Couplings by 1H$łbrace$27Al$\rbrace$ Offset REAPDOR,” The Journal of Physical Chemistry C, vol. 121, no. 46, Art. no. 46, 2017, doi: 10.1021/acs.jpcc.7b09544.
    14. H. Koller, T. Uesbeck, M. R. Hansen, and M. Hunger, “Characterizing the First and Second Al-27 Neighbors of Bronsted and Lewis Acid Protons in Zeolites and the Distribution of Al-27 Quadrupolar Couplings by H-1\Al-27\ Offset REAPDOR,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 121, no. 46, Art. no. 46, 2017, doi: 10.1021/acs.jpcc.7b09544.
    15. E. Klemm, M. Kraume, J. Ritter, and J. Sauer, “Reaktionstechnik und Mischvorgänge : zwei untrennbare Fachgebiete,” Chemie - Ingenieur - Technik, vol. 89, no. 4, Art. no. 4, 2017, doi: 10.1002/cite.201770042.
    16. E. Klemm, M. Kraume, J. Ritter, and J. Sauer, “Reaction Technology and Mixing Processes: two indivisible Specialist Areas,” CHEMIE INGENIEUR TECHNIK, vol. 89, no. 4, SI, Art. no. 4, SI, 2017, doi: 10.1002/cite.201770042.
    17. R. R. Karri, J. N. Sahu, and N. S. Jayakumar, “Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: Error analysis of linear and  non-linear methods,” JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, vol. 80, pp. 472–487, 2017, doi: 10.1016/j.jtice.2017.08.004.
    18. R. R. Karri, N. S. Jayakumar, and J. N. Sahu, “Modelling of fluidised-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon,” JOURNAL OF MOLECULAR LIQUIDS, vol. 231, pp. 249–262, 2017, doi: 10.1016/j.molliq.2017.02.003.
    19. M. Heuchel, F. Reinhardt, N. Merdanoglu, E. Klemm, and Y. Traa, “Co-catalytic cracking of n-decane and 2-ethylphenol over a variety of    deactivated zeolites for the conversion of fossil- and bio-based feeds    in Co-FCC,” MICROPOROUS AND MESOPOROUS MATERIALS, vol. 254, pp. 59–68, 2017, doi: 10.1016/j.micromeso.2017.05.005.
    20. P. D. Hermann, T. Cents, E. Klemm, and D. Ziegenbalg, “Determination of the Kinetics of the Ethoxylation of Octanol in    Homogeneous Phase,” INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 56, no. 21, Art. no. 21, 2017, doi: 10.1021/acs.iecr.7b00948.
    21. E. von Harbou, O. Wachsen, E. Klemm, and C. Dreiser, “Technische Chemie 2016,” Nachrichten aus der Chemie, vol. 65, no. 3, Art. no. 3, 2017, doi: 10.1002/nadc.20174057518.
    22. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, and C. Jaeger, “Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites,” CERAMICS INTERNATIONAL, vol. 43, no. 2, Art. no. 2, 2017, doi: 10.1016/j.ceramint.2016.11.004.
    23. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, and C. Jäger, “Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites,” Ceramics International, vol. 43, no. 2, Art. no. 2, 2017, doi: 10.1016/j.ceramint.2016.11.004.
    24. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, and L. C. Jaeger, “Differentiation of gel, zeolites and various water species in geopolymer-zeolite composites,” Ceramics international, vol. 43, no. 2, Art. no. 2, 2017, doi: 10.1016/j.ceramint.2016.11.004.
    25. P. Eversfield, W. Liu, and E. Klemm, “Effect of potassium on the physicochemical and catalytic characteristics of V2O5/TiO2 catalysts in o-xylene partial oxidation to phthalic anhydride,” Catalysis letters, vol. 147, no. 3, Art. no. 3, 2017, doi: 10.1007/s10562-017-1972-1.
    26. P. Eversfield, W. Liu, and E. Klemm, “Effect of Potassium on the Physiochemical and Catalytic Characteristics    of V2O5/TiO2 Catalysts in o-Xylene Partial Oxidation to Phthalic    Anhydride,” CATALYSIS LETTERS, vol. 147, no. 3, Art. no. 3, 2017, doi: 10.1007/s10562-017-1972-1.
    27. DevenP. Estes, “Mechanistic Investigations of C–H Activations on Silica-Supported Co(ii) Sites in Catalytic Propane Dehydrogenation,” CHIMIA International Journal for Chemistry, vol. 71, no. 4, Art. no. 4, 2017, doi: 10.2533/chimia.2017.177.
    28. D. P. Estes, A. K. Cook, E. Lam, L. Wong, and C. Copéret, “Understanding the Lewis Acidity of Co(II) Sites on a Silica Surface,” Inorganic Chemistry, vol. 56, no. 14, Art. no. 14, 2017, doi: 10.1021/acs.inorgchem.7b00443.
    29. D. P. Estes et al., “Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis,” Journal of the American Chemical Society, vol. 139, no. 48, Art. no. 48, 2017, doi: 10.1021/jacs.7b09934.
    30. G. Emig and E. Klemm, Chemische Reaktionstechnik, 6th ed. Berlin: Springer Vieweg, 2017.
    31. W. Dai et al., “Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density,” Catal. Sci. Technol., vol. 7, no. 3, Art. no. 3, 2017, doi: 10.1039/C6CY02564A.
  6. 2016

    1. S. C. C. Wiedemann et al., “Large Ferrierite Crystals as Models for Catalyst Deactivation during    Skeletal Isomerisation of Oleic Acid: Evidence for Pore Mouth Catalysis,” CHEMISTRY-A EUROPEAN JOURNAL, vol. 22, no. 1, Art. no. 1, 2016, doi: 10.1002/chem.201503551.
    2. M. Wichert, R. Zapf, A. Ziogas, G. Kolb, and E. Klemm, “Kinetic investigations of the steam reforming of methanol over a    Pt/In2O3/Al2O3 catalyst in microchannels,” CHEMICAL ENGINEERING SCIENCE, vol. 155, pp. 201–209, 2016, doi: 10.1016/j.ces.2016.08.009.
    3. Ü. Tastan and D. Ziegenbalg, “Getting the Most out of Solar Irradiation: Efficient Use of    Polychromatic Light for Water Splitting,” CHEMISTRY-A EUROPEAN JOURNAL, vol. 22, no. 52, Art. no. 52, 2016, doi: 10.1002/chem.201602709.
    4. K. Sato, K. Fujimoto, W. Dai, and M. Hunger, “Quantitative Elucidation of Cs Adsorption Sites in Clays: Toward Sophisticated Decontamination of Radioactive Cs,” The Journal of Physical Chemistry C, vol. 120, no. 2, Art. no. 2, 2016, doi: 10.1021/acs.jpcc.5b09350.
    5. R. Otterstaetter, H.-W. Zanthoff, and E. Klemm, “Three-Phase Heterogeneously Catalyzed Oxidative Esterification -    Relevance of Oxygen Mass Transport,” CHEMICAL ENGINEERING & TECHNOLOGY, vol. 39, no. 11, SI, Art. no. 11, SI, 2016, doi: 10.1002/ceat.201600184.
    6. U. Obenaus, S. Lang, and M. Hunger, “Relationships between the hydrogenation and dehydrogenation properties of Rh,- Ir-, Pd-, and Pt-containing zeolites Y,” presented at the Developments and Applications of Solid State NMR Conference, Varna, Bulgaria, 2016.
    7. U. Obenaus, F. Neher, M. Scheibe, M. Dyballa, S. Lang, and M. Hunger, “Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis,” The Journal of Physical Chemistry C, vol. 120, no. 4, Art. no. 4, 2016, doi: 10.1021/acs.jpcc.5b11367.
    8. A. Löwe, M. Trautmann, C. Ndibe, J. Maier, G. Scheffknecht, and Y. Traa, “Direct liquefaction of biocoals and similar biomass reactants,” in Beiträge zur DGMK-Fachbereichstagung “Konversion von Biomassen und Kohlen”, 9.-11. Mai 2016 in Rotenburg a.d. Fulda, Rothenburg a.d. Fulda, 2016, no. 2016, 2.
    9. S. Lang, M. Benz, U. Obenaus, R. Himmelmann, and M. Hunger, “Novel Approach for the Characterization of Lewis Acidic Solid Catalysts    by Solid-State NMR Spectroscopy,” CHEMCATCHEM, vol. 8, no. 12, Art. no. 12, 2016, doi: 10.1002/cctc.201600372.
    10. S. Lang and M. Hunger, “Modification of Co-FCC catalysts and their characterization by solid-state NMR spectroscopy,” presented at the Annual FASTCARD Meeting, Stuttgart, Germany, 2016.
    11. D. Kopljar, N. Wagner, and E. Klemm, “Transferring Electrochemical CO2 Reduction from Semi-Batch into    Continuous Operation Mode Using Gas Diffusion Electrodes,” CHEMICAL ENGINEERING & TECHNOLOGY, vol. 39, no. 11, SI, Art. no. 11, SI, 2016, doi: 10.1002/ceat.201600198.
    12. H. Koller et al., “Post-Synthesis Conversion of Borosilicate Zeolite Beta to an Aluminosilicate with Isolated Acid Sites: A Quantitative Distance Analysis by Solid-State NMR,” The Journal of Physical Chemistry C, vol. 120, no. 18, Art. no. 18, 2016, doi: 10.1021/acs.jpcc.6b01680.
    13. K. D. Kim et al., “Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation Reactions via Optimizing the Parameters of the Double-Flame Spray Pyrolysis,” ACS Catalysis, vol. 6, no. 4, Art. no. 4, 2016, doi: 10.1021/acscatal.6b00396.
    14. K. D. Kim et al., “Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation    Reactions via Optimizing the Parameters of the Double-Flame Spray    Pyrolysis,” ACS CATALYSIS, vol. 6, no. 4, Art. no. 4, 2016, doi: 10.1021/acscatal.6b00396.
    15. Y. Hu, A. P. Shaw, D. P. Estes, and J. R. Norton, “Transition-Metal Hydride Radical Cations,” Chemical Reviews, vol. 116, no. 15, Art. no. 15, 2016, doi: 10.1021/acs.chemrev.5b00532.
    16. P. D. Hermann, T. Cents, E. Klemm, and D. Ziegenbalg, “Simulation Study of the Ethoxylation of Octanol in a Microstructured    Reactor,” INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 55, no. 49, Art. no. 49, 2016, doi: 10.1021/acs.iecr.6b04110.
    17. S. Greiser, M. Hunger, and C. Jäger, “29Si$łbrace$27Al$\rbrace$ TRAPDOR MAS NMR to distinguish Q (mAl) sites in aluminosilicates. Test case: Faujasite-type zeolites,” Solid State Nuclear Magnetic Resonance, vol. 79, pp. 6--10, 2016, doi: 10.1016/j.ssnmr.2016.10.004.
    18. S. Greiser, M. Hunger, and C. Jaeger, “Si-29\Al-27\ TRAPDOR MAS NMR to distinguish Q(n)(mAl) sites in    aluminosilicates. Test case: Faujasite-type zeolites,” SOLID STATE NUCLEAR MAGNETIC RESONANCE, vol. 79, pp. 6–10, 2016, doi: 10.1016/j.ssnmr.2016.10.004.
    19. D. P. Estes et al., “C–H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs,” Journal of the American Chemical Society, vol. 138, no. 45, Art. no. 45, 2016, doi: 10.1021/jacs.6b08705.
    20. M. Dyballa et al., “Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22,” Applied Catalysis A: General, vol. 510, pp. 233--243, 2016, doi: 10.1016/j.apcata.2015.11.017.
    21. M. Dyballa et al., “Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion,” Microporous and Mesoporous Materials, vol. 233, pp. 26--30, 2016, doi: 10.1016/j.micromeso.2016.06.044.
    22. M. F. Delley et al., “X–H Bond Activation on Cr(III),O Sites (X = R, H): Key Steps in Dehydrogenation and Hydrogenation Processes,” Organometallics, vol. 36, no. 1, Art. no. 1, 2016, doi: 10.1021/acs.organomet.6b00744.
    23. W. Dai et al., “Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides,” ACS catalysis, vol. 6, no. 5, Art. no. 5, 2016, doi: 10.1021/acscatal.5b02823.
    24. C. Copéret et al., “Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities,” Chemical Reviews, vol. 116, no. 2, Art. no. 2, 2016, doi: 10.1021/acs.chemrev.5b00373.
    25. C. Copéret, D. P. Estes, K. Larmier, and K. Searles, “Isolated Surface Hydrides: Formation, Structure, and Reactivity,” Chemical Reviews, vol. 116, no. 15, Art. no. 15, 2016, doi: 10.1021/acs.chemrev.6b00082.
    26. E. Balcazar, F. Neher, C. Liebner, H. Hieronymus, and E. Klemm, “Determination of ignition temperature in micro reactors,” Chemical engineering transactions, vol. 48, pp. 547–552, 2016, doi: 10.3303/CET1648092.
    27. M. Aimer, E. Klemm, B. Langanke, H. Gehrke, and C. Stubenrauch, “Reactive Extraction of Lactic Acid by Using Tri-n-octylamine: Structure    of the Ionic Phase,” CHEMISTRY-A EUROPEAN JOURNAL, vol. 22, no. 10, Art. no. 10, 2016, doi: 10.1002/chem.201503799.
  7. 2015

    1. D. Ziegenbalg, B. Wriedt, G. Kreisel, and D. Kralisch, “Investigation of photon fluxes within microstructured photoreactors revealing great optimization potentials,” Chemical engineering & technology, vol. 39, no. 123–134, Art. no. 123–134, 2015, doi: 10.1002/ceat.201500498.
    2. Z. Wang et al., “Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone,” Catal. Sci. Technol., vol. 5, no. 5, Art. no. 5, 2015, doi: 10.1039/C5CY00214A.
    3. M. Trautmann, S. Lang, and Y. Traa, “Direct liquefaction of lower-rank coals and biocoals with magnetically    separable catalysts as a sustainable route to fuels,” FUEL, vol. 151, pp. 102–109, 2015, doi: 10.1016/j.fuel.2015.01.006.
    4. T. Titze et al., “Microimaging transienter Konzentrationsprofile von Raktant- und Produktmolekülen während einer katalytischen Umwandlung in nanoporösen Materialien,” Angewandte Chemie, vol. 127, no. 17, Art. no. 17, 2015, doi: 10.1002/ange.201409482.
    5. T. Titze et al., “Microimaging of Transient Concentration Profiles of Reactant and Product    Molecules during Catalytic Conversion in Nanoporous Materials,” ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol. 54, no. 17, Art. no. 17, 2015, doi: 10.1002/anie.201409482.
    6. Ü. Tastan and D. Ziegenbalg, “Rapid prototyping for fast and easy optimization of microstructured photoreactors,” presented at the ACHEMA 2015, Frankfurt am Main, 2015.
    7. B. Tang et al., “Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application,” Chinese Journal of Catalysis, vol. 36, no. 6, Art. no. 6, 2015, doi: 10.1016/s1872-2067(14)60277-1.
    8. B. Tang et al., “Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides,” Green Chem., vol. 17, no. 3, Art. no. 3, 2015, doi: 10.1039/C4GC02116A.
    9. X. Sun, W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Evidence of rutile-to-anatase photo-induced electron transfer in mixed-phase TiO2 by solid-state NMR spectroscopy,” Chem. Commun., vol. 51, no. 72, Art. no. 72, 2015, doi: 10.1039/C5CC04971G.
    10. S. Sen, R. Schowner, D. A. Imbrich, W. Frey, M. Hunger, and M. R. Buchmeiser, “Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene    Complexes: Reactivity in Selected Olefin Metathesis Reactions and    Immobilization on Silica,” CHEMISTRY-A EUROPEAN JOURNAL, vol. 21, no. 39, Art. no. 39, 2015, doi: 10.1002/chem.201501615.
    11. J. Sauer and E. Klemm, “Neue Aufgaben für die Reaktionstechnik,” Chemie - Ingenieur - Technik, vol. 87, no. 6, Art. no. 6, 2015, doi: 10.1002/cite.201590035.
    12. J. Sauer and E. Klemm, “New Tasks for the Reaction Technique,” CHEMIE INGENIEUR TECHNIK, vol. 87, no. 6, SI, Art. no. 6, SI, 2015, doi: 10.1002/cite.201590035.
    13. U. Obenaus, S. Lang, and M. Hunger, “Brønsted acidity of noble metal-containing zeolite catalysts studied by solid-state NMR upon adsorption of probe molecules,” presented at the 48. Jahrestreffen Deutscher Katalytiker, Weimar, 2015, [Online]. Available: /brokenurl#129.69.96.39/hunger/bilder/Poster_Obenaus_2015_4.pdf.
    14. U. Obenaus, M. Dyballa, S. Lang, M. Scheibe, and M. Hunger, “Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy,” The Journal of Physical Chemistry C, vol. 119, no. 27, Art. no. 27, 2015, doi: 10.1021/acs.jpcc.5b03149.
    15. G. Näfe et al., “Deactivation behavior of alkali-metal zeolites in the dehydration of lactic acid to acrylic acid,” Journal of Catalysis, vol. 329, pp. 413--424, 2015, doi: 10.1016/j.jcat.2015.05.017.
    16. L. T. H. Nam, T. Q. Vinh, N. D. Hoa, and M. Hunger, “Synthesis and characterisation of ZSM-5/SBA-15 composite material,” INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, vol. 12, no. 5–7, Art. no. 5–7, 2015, doi: 10.1504/IJNT.2015.067904.
    17. M. Nagel et al., “Impact of bacterial endotoxin on the structure of DMPC membranes,” BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, vol. 1848, no. 10, A, Art. no. 10, A, 2015, doi: 10.1016/j.bbamem.2015.06.008.
    18. D. Kopljar et al., “Entwicklung und Einsatz von Gasdiffusionselektroden zur elektrochemischen Reduktion von CO2,” Chemie - Ingenieur - Technik, vol. 87, no. 6, Art. no. 6, 2015, doi: 10.1002/cite.201400135.
    19. D. Kopljar et al., “Development and Utilization of Gas Diffusion Electrodes for the    Electrochemical Reduction of CO2,” CHEMIE INGENIEUR TECHNIK, vol. 87, no. 6, SI, Art. no. 6, SI, 2015, doi: 10.1002/cite.201400135.
    20. Y. Jiang, J. Huang, M. Hunger, M. Maciejewski, and A. Baiker, “Comparative studies on the catalytic activity and structure of a Cu-MOF and its precursor for alcoholysis of cyclohexene oxide,” Catal. Sci. Technol., vol. 5, no. 2, Art. no. 2, 2015, doi: 10.1039/C4CY00916A.
    21. L. T. Hoai Nam, T. Quang Vinh, N. Duc Hoa, and M. Hunger, “Synthesis and characterization of ZSM-5/SBA-15 composite material,” International journal of nanotechnology, vol. 12, no. 5–7, Art. no. 5–7, 2015, doi: 10.1504/IJNT.2015.067904.
    22. D. P. Estes and C. Copéret, “The Role of Proton Transfer in Heterogeneous Transformations of Hydrocarbons,” CHIMIA International Journal for Chemistry, vol. 69, no. 6, Art. no. 6, 2015, doi: 10.2533/chimia.2015.321.
    23. M. Dyballa et al., “Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange,” Microporous and Mesoporous Materials, vol. 212, pp. 110--116, 2015, doi: 10.1016/j.micromeso.2015.03.030.
    24. W. Dai, M. Dyballa, G. Wu, L. Li, N. Guan, and M. Hunger, “Intermediates and Dominating Reaction Mechanism During the Early Period    of the Methanol-to-Olefin Conversion on SAPO-41,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 5, Art. no. 5, 2015, doi: 10.1021/jp5118757.
    25. W. Dai et al., “Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from    NMR Spectroscopy and DFT Calculations,” ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol. 54, no. 30, Art. no. 30, 2015, doi: 10.1002/anie.201502748.
    26. W. Dai et al., “Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34,” ACS Catalysis, vol. 5, no. 1, Art. no. 1, 2015, doi: 10.1021/cs5015749.
  8. 2014

    1. Z. Wang, Y. Jiang, M. Hunger, A. Baiker, and J. Huang, “Catalytic performance of Bronsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica-zirconia,” vol. 6, no. 10, Art. no. 10, 2014, doi: 10.1002/cctc.201402397.
    2. Z. Wang, L. Wang, Y. Jiang, M. Hunger, and J. Huang, “The cooperativity of Bronsted and Lewis acid sites on zeolite for glycerol dehydration,” vol. 4, pp. 1144–1147, 2014.
    3. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Verifying the dominant catalytic cycle of the methanol-to-hydrocarbon conversion over SAPO-41,” vol. 2014, no. 4, Art. no. 4, 2014, doi: 10.1039/C3CY00740E.
    4. D. Wan Hussin and Y. Traa, “Production of high-octane fuel components by dehydroalkylation of benzene with mixtures of ethane and propane,” Energy & fuels, vol. 28, no. 5, Art. no. 5, 2014, doi: 10.1021/ef500333b.
    5. X. H. Vu, U. Bentrup, M. Hunger, R. Kraehnert, U. Armbruster, and A. Martin, “Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst,” Journal of materials science, vol. 49, no. 16, Art. no. 16, 2014, doi: 10.1007/s10853-014-8287-z.
    6. M. Trautmann, A. Löwe, and Y. Traa, “An alternative method for the production of second-generation biofuels,” vol. 16, pp. 3710–3714, 2014, doi: 10.1039/C4GC00649F.
    7. B. Tang, W. Dai, G. Wu, N. Guan, L. Li, and M. Hunger, “Improved post-synthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-open hydration of epoxides,” vol. 4, pp. 2801–2810, 2014.
    8. X. Sun, M. Dyballa, J. Yan, L. Li, N. Guan, and M. Hunger, “Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2,” vol. 94, pp. 34–40, 2014, doi: 10.1016/j.cplett.2014.01.014.
    9. J. Sauer and E. Klemm, “Reaktionstechnik - von den Grundlagen zu industriellen Anwendungen,” Chemie - Ingenieur - Technik, vol. 86, no. 4, Art. no. 4, 2014, doi: 10.1002/cite.201490022.
    10. K. Sato, W. Numata K. nd Dai, and M. Hunger, “Tunable states of interlayer cations in two-dimensional materials,” vol. 104, p. 131901, 2014, doi: 10.1063/1.4870006.
    11. K. Sato, K. Numata, W. Dai, and M. Hunger, “Long-term self-assembly of inorganic layered materials influenced by the local states of the interlayer cations,” vol. 16, no. 22, Art. no. 22, 2014, doi: 10.1039/c4cp00990h.
    12. E. Roduner, Ch. Jensen, J. van Slageren, R. A. Rakozy, O. Larlus, and M. Hunger, “Anomalous diamagnetic susceptibility in 13-atom Pt nanocluster superatoms,” vol. 53, pp. 4318–4321, 2014.
    13. G. Näfe, Y. Traa, T. Hirth, and E. Klemm, “True catalytic behavior of lactic acid dehydration on zeolite Na-Y in the gas phase measured by means of a novel apparatus design,” vol. 144, no. 7, Art. no. 7, 2014, doi: 10.1007/s10562-014-1270-0.
    14. G. Li, D. P. Estes, J. R. Norton, S. Ruccolo, A. Sattler, and W. Sattler, “Dihydrogen Activation by Cobaloximes with Various Axial Ligands,” Inorganic Chemistry, vol. 53, no. 19, Art. no. 19, 2014, doi: 10.1021/ic501975r.
    15. T. Lange et al., “Heterogeneous catalysis meets micro reactors,” in Preprints of the DGMK-Conference “Selective Oxidation and Functionalization, Classical and Alternative Routes and Sources,” Berlin, Germany, 2014, no. 2014,3, p. 97.
    16. J. Kärger et al., “Microimaging of transient guest profiles to monitor mass transfer in nanoporous materials,” vol. 13, pp. 333–343, 2014, doi: 10.1038/nmat3917.
    17. D. Kopljar, A. Inan, P. Vindayer, N. Wagner, and E. Klemm, “Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes,” vol. 44, no. 10, Art. no. 10, 2014, doi: 10.1007/s10800-014-0731-x.
    18. E. Klemm and K. Wagemann, “Technische Chemie - ein unverzichtbarer Brückenkopf,” Chemie - Ingenieur - Technik, vol. 86, no. 11, Art. no. 11, 2014, doi: 10.1002/cite.201490099.
    19. M. Hunger, “In situ MAS NMR spectroscopy.” Centre for Surface Chemistry and Catalysis, KU Leuven, Belgium, 2014.
    20. S.-F. Hsu et al., “Eine auf Ru-Katalyse basierende wiederaufladbare Wasserstoffbatterie,” vol. 126, no. 27, Art. no. 27, 2014, doi: 10.1002/ange.201310972.
    21. M. Grzywa et al., “Coordination frameworks assembled from CuII ions and 1,3-bis(3,5-dimethyl-1H-pyrazol-4-yl)benzene ligands,” vol. 43, pp. 16846–16856, 2014, doi: 10.1039/C4DT01880J.
    22. D. P. Estes, D. C. Grills, and J. R. Norton, “The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics,” Journal of the American Chemical Society, vol. 136, no. 50, Art. no. 50, 2014, doi: 10.1021/ja508200g.
    23. T. T. H. Dang, D.-L. Hoang, M. Schneider, M. Hunger, and A. Martin, “Impact of conventional and microwave heating on SAPO-5 formation and Brønsted acidic properties,” Zeitschrift für anorganische und allgemeine Chemie, ZAAC, vol. 640, no. 8–9, Art. no. 8–9, 2014, doi: 10.1002/zaac.201400014.
    24. W. Dai et al., “Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13,” Journal of catalysis, vol. 314, pp. 10–20, 2014, doi: 10.1016/j.jcat.2014.03.006.
    25. V. Calemma, M. Ferrari, T. Holl, and J. Weitkamp, “Catalytic ring opening of cyclic hydrocarbons in Diesel fuels,” vol. 40, pp. 77–83, 2014.
  9. 2013

    1. Z. Wang et al., “One-step room-temperature synthesis of AlMCM-41 materials for the catalytic conversion of phenylglyoxal to ethylmandelate,” ChemCatChem, vol. 5, no. 12, Art. no. 12, 2013, doi: 10.1002/cctc.201300375.
    2. Z. Wang, S. Pokhrel, M. Chen, M. Hunger, L. Mädler, and J. Huang, “Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone,” Journal of catalysis, vol. 302, pp. 10–19, 2013, doi: 10.1016/j.jcat.2013.02.017.
    3. M. Trautmann and Y. Traa, “Efficient direct brown coal liquefaction with sulfided Co/SiO2 catalysts,” Energy & fuels, vol. 27, no. 9, Art. no. 9, 2013, doi: 10.1021/ef400962n.
    4. M. Trautmann, A. Löwe, and Y. Traa, “Efficient direct coal liquefaction of a premium brown coal catalyzed by cobalt-promoted fumed oxides,” in Preprints of the DGMK-Conference “New Technologies and Alternative Feedstocks in Petrochemistry and Refining”, October 9 - 11, 2013, Dresden, Germany, Dresden, Germany, 2013, no. 2013,2, pp. 131–138.
    5. S. Schulze et al., “Investigations on the anionic polymerization of butadiene in capillaries by kinetic measurements and reactor simulation,” vol. 2, no. 5, Art. no. 5, 2013, doi: 10.1515/gps-2013-0059.
    6. K. Sato, K. Fujimoto, W. Dai, and M. Hunger, “Molecular mechanism of heavily adhesive Cs,” The @journal of physical chemistry. C, Nanomaterials and interfaces, vol. 117, no. 27, Art. no. 27, 2013, doi: 10.1021/jp403899w.
    7. D. Santi, S. Rabl, V. Calemma, M. Dyballa, M. Hunger, and J. Weitkamp, “Effect of noble metals on the strength of Bronsted acid sites in bifunctional zeolites,” vol. 5, no. 6, Art. no. 6, 2013, doi: 10.1002/cctc.201200675.
    8. D. Santi, T. Holl, V. Calemma, and J. Weitkamp, “High-performance ring-opening catalysts based on iridium-containing zeolite Beta in the hydroconversion of decalin,” Applied catalysis. A, General, vol. 455, pp. 46–57, 2013, doi: 10.1016/j.apcata.2013.01.020.
    9. M. Rupp, W. Ruback, and E. Klemm, “Alcohol ethoxylation kinetics,” Chemical engineering and processing, vol. 74, pp. 187–192, 2013, doi: 10.1016/j.cep.2013.09.006.
    10. M. Rupp, W. Ruback, and E. Klemm, “Octanol ethoxylation in microchannels,” Chemical engineering and processing, vol. 74, pp. 19–26, 2013, doi: 10.1016/j.cep.2013.09.012.
    11. E. Roduner et al., “Selective catalytic oxidation of C-H bonds with molecular oxygen,” ChemCatChem, vol. 5, no. 1, Art. no. 1, 2013, doi: 10.1002/cctc.201200266.
    12. T. Lange, S. Heinrich, C. Liebner, H. Hieronymus, and E. Klemm, “Reaction engineering investigations of the partial oxidation of o-Xylene in the explosion regime - microfixed bed versus catalyst coating,” vol. 85, no. 4, Art. no. 4, 2013, doi: 10.1002/cite.201200197.
    13. E. Klemm, L. Greiner, and R. Horn, “Reaktionstechnik - von der Synthese zum Prozess,” Chemie - Ingenieur - Technik, vol. 85, no. 4, Art. no. 4, 2013, doi: 10.1002/cite.201390024.
    14. H. Henning, M. Dyballa, M. Scheibe, E. Klemm, and M. Hunger, “In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y,” Chemical physics letters, vol. 555, pp. 258–262, 2013, doi: 10.1016/j.cplett.2012.10.068.
    15. M. Grzywa et al., “CFA-2 and CFA-3 (Coordination Framework Augsburg University-2 and -3); novel MOFs assembled from trinuclear Cu(I)/Ag(I) secondary building units and 3,3’,5,5’-tetraphenyl-bipyrazolate ligands,” vol. 42, no. 19, Art. no. 19, 2013, doi: 10.1039/c3dt32302a.
    16. U. Filek, D. Mucha, M. Hunger, and B. Sulikowski, “Novel gallium and indium salts of the 12-tungstophosphoric heteropolyacid: Synthesis, characterization and catalytic properties,” vol. 30, pp. 19–22, 2013.
    17. M. Dyballa, E. Klemm, J. Weitkamp, and M. Hunger, “Effect of phosphate modification on the Bronsted acidity and methanol-to-olefin conversion activity of Zeolite ZSM-5,” vol. 85, no. 11, Art. no. 11, 2013, doi: 10.1002/cite.201300066.
    18. W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts,” ACS catalysis, vol. 3, no. 4, Art. no. 4, 2013, doi: 10.1021/cs400007v.
    19. V. Calemma, M. Ferrari, S. Rabl, and J. Weitkamp, “Selective ring opening of naphthenes,” Fuel, vol. 111, pp. 763–770, 2013, doi: 10.1016/j.fuel.2013.04.055.
    20. V. Calemma, M. Ferrari, S. Rabl, A. Haas, D. Santi, and J. Weitkamp, “Catalytic ring opening of cyclic hydrocarbons in Diesel fuels,” in Preprints of the DGMK-Conference “New Technologies and Alternative Feedstocks in Petrochemistry and Refining”, October 9 - 11, 2013, Dresden, Germany, Dresden, Germany, 2013, no. 2013,2, pp. 39–50.
  10. 2012

    1. J. Weitkamp, “Catalytic hydrocracking-mechanisms and versatility of the process,” ChemCatChem, vol. 4, no. 3, Art. no. 3, 2012, doi: 10.1002/cctc.201100315.
    2. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Phosphorus modified HMCM-22,” Microporous and mesoporous materials, vol. 151, pp. 99–106, 2012, doi: 10.1016/j.micromeso.2011.11.008.
    3. S. Schuster, E. Klemm, and M. Bauer, “The role of Pd2+/Pd0 in hydrogenation by Pd(2-pymo)2n,” Chemistry - a European journal, vol. 18, no. 49, Art. no. 49, 2012, doi: 10.1002/chem.201202129.
    4. K. Sato, K. Fujimoto, K. Kawamura, W. Dai, and M. Hunger, “Rheological mechanism of long-term self-assembly in saponite nanoparticles,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 116, no. 43, Art. no. 43, 2012, doi: 10.1021/jp307358d.
    5. R. Rachwalik, M. Hunger, and B. Sulikowski, “Transformations of monoterpene hydrocarbons on ferrierite type zeolites,” Applied catalysis. A, General, vol. 427, pp. 98–105, 2012, doi: 10.1016/j.apcata.2012.03.037.
    6. R. Rachwalik, M. Hunger, and B. Sulikowski, “Transformations of monoterpene hydrocarbons on ferrierte type zeolites,” vol. 427/428, pp. 98–105, 2012.
    7. S. Opelt, V. Krug, J. Sonntag, M. Hunger, and E. Klemm, “Investigations on stability and reusability of Pd(2-pymo)2n as hydrogenation catalyst,” vol. 147, pp. 327–333, 2012.
    8. C. Liebner, J. Fischer, S. Heinrich, T. Lange, H. Hieronymus, and E. Klemm, “Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures,” Process safety and environmental protection, vol. 90, no. 2, Art. no. 2, 2012, doi: 10.1016/j.psep.2011.08.006.
    9. G. Li, A. Han, M. E. Pulling, D. P. Estes, and J. R. Norton, “Evidence for Formation of a Co–H Bond from (H2O)2Co(dmgBF2)2 under H2: Application to Radical Cyclizations,” Journal of the American Chemical Society, vol. 134, no. 36, Art. no. 36, 2012, doi: 10.1021/ja306037w.
    10. T. Lange, S. Heinrich, C. Liebner, H. Hieronymus, and E. Klemm, “Reaction engineering investigations of the heterogeneously catalyzed partial oxidation of o-xylene in the explosion regime using a microfixed bed reactor,” Chemical engineering science, vol. 69, no. 1, Art. no. 1, 2012, doi: 10.1016/j.ces.2011.10.072.
    11. I. Kley and Y. Traa, “Influence of acid sites on the propene selectivity during propane dehydrogenation on zeolite Pt/Zn,Na-MCM-22,” Microporous and mesoporous materials, vol. 164, pp. 145–147, 2012, doi: 10.1016/j.micromeso.2012.06.058.
    12. M. Hunger, “In situ solid-state NMR investigation of the interaction and conversion of ethylbenzene on acidic zeolite catalysts,” presented at the 33rd Danish NMR Meeting, University of Aarhus, Denmark, 2012.
    13. M. Hunger, “Contributions of solid-state NMR to the development and understanding of solid catalysts.” Institute of New Catalytic Materials Sciences, Nankai University, Tianjin, P.R. China, 2012.
    14. H. Henning, M. Dornbach, M. Scheibe, E. Klemm, and M. Hunger, “In situ MAS NMR investigation of the hydrogenation of acrylonitrile on Pt- and Rh-containing zeolites Y,” Microporous and mesoporous materials, vol. 164, pp. 104–110, 2012, doi: 10.1016/j.micromeso.2012.06.021.
    15. S. Heinrich, F. Edeling, C. Liebner, H. Hieronymus, T. Lange, and E. Klemm, “Catalyst as ignition source of an explosion inside a microreactor,” Chemical engineering science, vol. 84, pp. 540–543, 2012, doi: 10.1016/j.ces.2012.08.049.
    16. A. Haas, S. Rabl, M. Ferrari, V. Calemma, and J. Weitkamp, “Ring opening of decalin via hydrogenolysis on Ir/- and Pt/silica catalysts,” Applied catalysis. A, General, vol. 425, pp. 97–109, 2012, doi: 10.1016/j.apcata.2012.03.010.
    17. D. P. Estes, J. R. Norton, S. Jockusch, and W. Sattler, “Mechanisms by which Alkynes React with CpCr(CO)3H. Application to Radical Cyclization,” Journal of the American Chemical Society, vol. 134, no. 37, Art. no. 37, 2012, doi: 10.1021/ja306120n.
    18. S. Ernst, J. Kärger, E. Klemm, M. Stocker, and Y. Traa, Eds., Microporous and mesoporous materials, vol. 164. 2012.
    19. M. Dyballa, M. Scheibe, M. Hunger, W. Dai, L. Li, and N. Guan, “PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34 upon using as MTO catalyst,” presented at the 24. Deutsche Zeolith-Tagung, Magdeburg, Germany, 2012.
    20. W. Dai, M. Scheibe, L. Li, N. Guan, and M. Hunger, “Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 116, no. 3, Art. no. 3, 2012, doi: 10.1021/jp208815g.
    21. W. Dai, X. Wang, G. Wu, L. Li, N. Guan, and M. Hunger, “Methanol-to-olefin conversion catalyzed by low-silica AlPO-34 with traces of Bronsted acid sites,” ChemCatChem, vol. 4, no. 9, Art. no. 9, 2012, doi: 10.1002/cctc.201100503.
    22. B. Cortese, T. Noel, M. H. J. M. de Croon, S. Schulze, E. Klemm, and V. Hessel, “Modeling of anionic polymerization in flow with coupled variations of concentration, viscosity, and diffusivity,” Macromolecular reaction engineering, vol. 6, no. 12, Art. no. 12, 2012, doi: 10.1002/mren.201200027.
    23. G. Bellussi et al., “Catalytic ring opening of perhydroindan - hydrogenolytic and cationic reaction paths,” Chinese Journal of Catalysis, vol. 33, no. 1, Art. no. 1, 2012, doi: 10.1016/S1872-2067(10)60278-1.
  11. 2011

    1. J. Weitkamp et al., “Recent progress in the selective catalytic ring opening of decalin,” in Advances in zeolite science and technologies, Naples, 2011, pp. 321–324.
    2. J. Weitkamp, S. Rabl, A. Haas, D. Santi, M. Ferrari, and V. Calemma, “Catalytic ring opening of decalin - bifunctional versus hydrogenolytic pathways,” vol. 37, pp. 94–98, 2011.
    3. S. Rabl et al., “Ring opening of cis-decalin on bifunctional Ir/- and Pt/La-X zeolite catalysts,” Applied catalysis. A, General, vol. 400, no. 1, Art. no. 1, 2011, doi: 10.1016/j.apcata.2011.04.026.
    4. S. Rabl et al., “Catalytic ring opening of decalin on Ir- and Pt-containing zeolite Y,” Microporous and mesoporous materials, vol. 146, no. 1, Art. no. 1, 2011, doi: 10.1016/j.micromeso.2011.03.045.
    5. M. Padmanaban et al., “Application of a chiral metal-organic framework in enantioselective separation,” Chemical communications, ChemComm, vol. 47, no. 44, Art. no. 44, 2011, doi: 10.1039/C1CC14893A.
    6. E. Klemm, G. Mathivanan, T. Schwarz, and S. Schirrmeister, “Evaporation of hydrogen peroxide with a microstructured falling film,” Chemical engineering and processing, vol. 50, no. 10, Art. no. 10, 2011, doi: 10.1016/j.cep.2011.05.020.
    7. Y. Jiang, J. Huang, W. Dai, and M. Hunger, “Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts,” Solid state nuclear magnetic resonance, vol. 39, no. 3, Art. no. 3, 2011, doi: 10.1016/j.ssnmr.2011.03.007.
    8. M. Hunger, “Nutzung der Festkörper-NMR-Spektroskopie für die Entwicklung und Charakterisierung von Feststoff-Katalysatoren.” University Kaiserslautern, Department of Chemistry, 2011.
    9. M. Hunger, “Mechanisms of the methanol-to-hydrocarbon (MTH) conversion on acidic zeolite catalysts,” presented at the Vietnamese-German Conference on Catalytic and Chemical Technologies for Sustainable Development Programme, Hanoi, Vietnam, 2011.
    10. M. Hunger, “Solid-state NMR as an analytical tool for the development of catalyst systems,” presented at the 43nd Polish Annual Conference on Catalysis, Cracow, Poland, 2011.
    11. J. Huang, Y. Jiang, N. van Vegten, M. Hunger, and A. Baiker, “Tuning the support acidity of flame-made Pd/SiO2-Al2O3 catalysts for chemoselective hydrogenation,” Journal of catalysis, vol. 281, no. 2, Art. no. 2, 2011, doi: http://dx.doi.org/10.1016/j.jcat.2011.05.023.
    12. H. Hieronymus, J. Fischer, S. Heinrich, C. Liebner, T. Lange, and E. Klemm, “Sicherheitstechnische Untersuchungen zum Betrieb von Mikroreaktoren im Explosionsbereich,” Chemie Ingenieur Technik, vol. 83, no. 10, Art. no. 10, 2011, doi: 10.1002/cite.201100112.
    13. F. Hibbe, V. R. Marthala, C. Chmelik, J. Weitkamp, and J. Kärger, “Micro-imaging of transient guest profiles in nanochannels,” vol. 135, no. 18, Art. no. 18, 2011, doi: 10.1063/1.3652715.
    14. F. Hibbe, J. M. van Baten, R. Krishna, C. Chmelik, J. Weitkamp, and J. Kärger, “In-depth study of mass transfer in nanoporous materials by micro-imaging,” Chemie - Ingenieur - Technik, vol. 83, no. 12, Art. no. 12, 2011, doi: 10.1002/cite.201100167.
    15. S. Heinrich, M. Plettig, and E. Klemm, “Role of the Ti(IV)-superoxide species in the selective oxidation of alkanes with hydrogen peroxide in the gas phase on titanium silicalite-1,” Catalysis letters, vol. 141, no. 2, Art. no. 2, 2011, doi: 10.1007/s10562-010-0534-6.
    16. A. Demin, T. Montsch, and E. Klemm, “Untersuchungen der Induktionsphase der Hydrochlorierung von metallurgischem Silicium,” Chemie Ingenieur Technik, vol. 83, no. 10, Art. no. 10, 2011, doi: 10.1002/cite.201100069.
    17. W. Dai, N. Li, L. Li, N. Guan, and M. Hunger, “Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves,” Catalysis communications, vol. 16, no. 1, Art. no. 1, 2011, doi: 10.1016/j.catcom.2011.09.025.
    18. W. Dai, M. Scheibe, N. Guan, L. Li, and M. Hunger, “Fate of Bronsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34,” ChemCatChem, vol. 3, no. 7, Art. no. 7, 2011, doi: 10.1002/cctc.201100059.
    19. W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, and L. Li, “Methanol-to-olefin conversion on silicoaluminophosphate catalysts,” ACS Catalysis, vol. 1, no. 4, Art. no. 4, 2011, doi: 10.1021/cs200016u.
  12. 2010

    1. J. Weitkamp, “Catalytic ring opening in aromatic hydrocarbons,” in On catalysis, no. 2, W. Reschetilowski, Ed. Berlin: VWB, Verl. für Wiss. und Bildung, 2010, pp. 162–185.
    2. J. Weitkamp, S. Rabl, A. Haas, M. Ferrari, and V. Calemma, “Catalytic ring opening of decalin - bifunctional versus hydrogenolytic pathways,” in Preprints of the DGMK-Conference “The future role of hydrogen in petrochemistry and energy supply,” Berlin, Germany, 2010, no. 2010,3, pp. 77–86.
    3. E. Weber et al., “Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters,” Journal of molecular catalysis. B, Enzymatic, vol. 64, no. 1, Art. no. 1, 2010, doi: 10.1016/j.molcatb.2010.01.020.
    4. Y. Traa, “Is a renaissance of coal imminent? - challenges for catalysis,” vol. 46, pp. 2175–2187, 2010, doi: 10.1039/B927060D.
    5. T. Schwarz, H. Döring, E. Klemm, and S. Schirrmeister, “Herstellung von Wandkatalysatoren für Mikrostrukturreaktoren mittels der Niederdruckspritztechnologie,” Chemie - Ingenieur - Technik, vol. 82, no. 6, Art. no. 6, 2010, doi: 10.1002/cite.200900165.
    6. V. R. R. Marthala, J. Frey, and M. Hunger, “Accessibility and interaction of surface OH groups in microporous and mesoporous catalysts applied for vapor-phase Beckmann rearrangement of oximes,” Catalysis letters, vol. 135, no. 1, Art. no. 1, 2010, doi: 10.1007/s10562-010-0274-7.
    7. C. Lieder, S. Opelt, M. Dyballa, H. Henning, E. Klemm, and M. Hunger, “Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 114, no. 39, Art. no. 39, 2010, doi: 10.1021/jp105700b.
    8. Y. Jiang, J. Huang, S. Marx, W. Kleist, M. Hunger, and A. Baiker, “Effect of dehydration on the local structure of framework aluminum atoms in mixed linker MIL-53(Al) materials studied by solid-state NMR spectroscopy,” The journal of physical chemistry letters, vol. 1, no. 19, Art. no. 19, 2010, doi: 10.1021/jz1010835.
    9. M. Hunger, “Catalytically active sites,” vol. 2, J. Cejka, Ed. Weinheim: Wiley-VCH, 2010, pp. 493–546.
    10. M. Hunger, “In situ solid-state NMR investigation of the reactivity of ethylbenzene in acidic zeolites,” presented at the 32nd Discussion Meeting and Joint Benelux/German Magnetic Resonance Conference, Münster, Germany, 2010.
    11. J. Huang, N. van Vegten, Y. Jiang, M. Hunger, and A. Baiker, “Incrasing the Bronsted acidity of flame-derived silica-alumina up to zeolitic strength,” vol. 49, pp. 7776–7781, 2010, doi: 10.1002/anie.201003391.
    12. J. Frey et al., “Quantitative solid-state NMR investigation of V5+ species in VPO catalysts upon sequential selective oxidation of n-butane,” Journal of catalysis, vol. 272, no. 1, Art. no. 1, 2010, doi: 10.1016/j.jcat.2010.03.004.
    13. J. Frey and M. Hunger, “UV/Vis and solid-state NMR investigation of the effect of sequential reaction conditions on VPO catalysts during selective oxidation of n-butane,” presented at the 43. Jahrestreffen Deutscher Katalytiker, Weimar, 2010.
    14. J. Fischer, T. Lange, R. Boehling, A. Rehfinger, and E. Klemm, “Uncatalyzed selective oxidation of liquid cyclohexane with air in a microcapillary reactor,” Chemical engineering science, vol. 65, no. 16, Art. no. 16, 2010, doi: 10.1016/j.ces.2010.05.028.
    15. A. Bressel, J. Frey, U. Filek, B. Sulikowski, D. Freude, and M. Hunger, “Oxygen coordination of aluminum cations in dehydrated AlPW12O40 investigated by solid-state NMR spectroscopy,” Chemical physics letters, vol. 487, no. 4, Art. no. 4, 2010, doi: 10.1016/j.cplett.2010.01.048.
  13. 2009

    1. J. Weitkamp, “Hydrogen storage in zeolites,” in Fuel cells (solid oxide fuel cells) - Measurement methods, vol. 3, J. Garche, Ed. Amsterdam: Academic Press, 2009, pp. 497–503.
    2. J. Silvestre-Albero et al., “Characterization measurements of common reference nanoporous materials by gas adsorption (round robin tests),” in Characterisation of Porous Solids VIII, Edinburgh, 2009, pp. 9–16, doi: 10.1039/9781847559418-00009.
    3. S. A. S. Rezai, F. Bauer, U. Decker, and Y. Traa, “Isotopic studies on the dehydroalkylation of toluene with ethane,” Journal of molecular catalysis. A, Chemical, vol. 314, no. 1, Art. no. 1, 2009, doi: 10.1016/j.molcata.2009.08.024.
    4. J. Kärger et al., “Benefit of microscopic diffusion measurement for the characterization of nanoporous materials,” Chemical engineering & technology, vol. 32, no. 10, Art. no. 10, 2009, doi: 10.1002/ceat.200900160.
    5. Y. Jiang et al., “Adsorption-Desorption Induced Structural Changes of Cu-MOF Evidenced by Solid State NMR and EPR Spectroscopy,” Journal of the American Chemical Society, vol. 131, no. 6, Art. no. 6, 2009, doi: 10.1021/ja8088718.
    6. M. Hunger, “Techniques and applications of in situ solid-state NMR spectroscopy in heterogeneous catalysis,” presented at the NMR seminar of SINTEF, Oslo, Norway, 2009.
    7. M. Hunger, “Solid-state NMR spectroscopy,” in Zeolite characterization and catalysis, Dordrecht: Springer, 2009, pp. 65–106.
    8. J. Huang, Y. Jiang, V. R. R. Marthala, A. Bressel, J. Frey, and M. Hunger, “Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts,” Journal of catalysis, vol. 263, pp. 277–283, 2009.
    9. J. Frey et al., “Vanadium phosphates on mesoporous supports,” Solid state nuclear magnetic resonance, vol. 35, no. 2, Art. no. 2, 2009, doi: 10.1016/j.ssnmr.2009.02.005.
    10. J. Frey, Y. S. Ooi, B. Thomas, and Marthala, R. V. Reddy, A. Bressel, and M. Hunger, “Vanadium phosphates on mesoporous supports,” presented at the 42. Jahrestreffen Deutscher Katalytiker, Weimar, 2009.
    11. J. Fischer, C. Liebner, H. Hieronymus, and E. Klemm, “Maximum safe diameters of microcapillaries for a stoichiometric ethene/oxygen mixture,” Chemical engineering science, vol. 64, no. 12, Art. no. 12, 2009, doi: 10.1016/j.ces.2009.03.038.
    12. C. Chmelik et al., “Ensemble measurement of diffusion,” ChemPhysChem, vol. 10, no. 15, Art. no. 15, 2009, doi: 10.1002/cphc.200900489.
  14. 2008

    1. R. Wolf et al., “The homoleptic sandwich anion Co(P2C2tBu2)2-,” Angewandte Chemie. International edition, vol. 47, no. 24, Art. no. 24, 2008, doi: 10.1002/anie.200800813.
    2. J. Weitkamp, “Katalyse in der Verarbeitung von Erdöl und Erdgas,” in Katalyse, heterogene Katalysatoren - gestern, heute, morgen, Ludwigshafen: BASF SE, 2008, pp. 52–59.
    3. J. Weitkamp, “Ring opening of aromatics,” 2nd ed., vol. 7, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 3133–3152.
    4. J. Weitkamp, “Catalysis in petroleum refining and natural gas processing,” in Catalysis, heterogeneous catalysts - yesterday, today, tomorrow, Ludwigshafen: BASF SE, 2008, pp. 52–59.
    5. W. Wang and M. Hunger, “Reactivity of surface alkoxy species on acidic zeolite catalysts,” Accounts of chemical research, vol. 41, no. 8, Art. no. 8, 2008, doi: 10.1021/ar700210f.
    6. Y. Traa, “The dehydroalkylation of toluene with ethane - an example for the non-oxidative activation of light alkanes,” in Preprints of the Conference “Future Feedstocks for Fuels and Chemicals,” Berlin, Germany, 2008, no. 2008,3, pp. 59–66.
    7. Y. Traa and J. Weitkamp, “Alkylation of isobutane with light alkenes on solid catalysts,” 2nd ed., vol. 6, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 2830–2854.
    8. Y. Traa, “Non-oxidative activation of alkanes,” 2nd ed., vol. 7, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 3194–3206.
    9. M. Stöcker and J. Weitkamp, “Zeolite standard catalysts and related activities of the International Zeolite Association,” 2nd ed., vol. 1, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 715–719.
    10. S. A. Sadat Rezai and Y. Traa, “Dehydroalkylation of toluene with ethane in a packed-bed membrane reactor with a bifunctional catalyst and a hydrogen-selective membrane,” Chemical communications, ChemComm, no. 20, Art. no. 20, 2008, doi: 10.1039/B800486B.
    11. S. A. S. Rezai and Y. Traa, “Equilibrium shift in membrane reactors: A thermodynamic analysis of the dehydrogenative conversion of alkanes,” Journal of membrane science, vol. 319, no. 1, Art. no. 1, 2008, doi: 10.1016/j.memsci.2008.03.051.
    12. S. Opelt, S. Türk, E. Dietzsch, A. Henschel, S. Kaskel, and E. Klemm, “Preparation of palladium supported on MOF-5 and its use as hydrogenation catalyst,” Catalysis communications, vol. 9, no. 6, Art. no. 6, 2008, doi: 10.1016/j.catcom.2007.11.019.
    13. V. R. R. Marthala, S. Rabl, J. Huang, S. A. S. Rezai, B. Thomas, and M. Hunger, “In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol,” Journal of Catalysis, vol. 257, no. 1, Art. no. 1, 2008, doi: 10.1016/j.jcat.2008.04.014.
    14. V. R. R. Marthala, S. Rabl, and M. Hunger, “Solid-state MAS NMR studies on the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime,” presented at the 20. Deutsche Zeolith-Tagung, Halle, Germany, 2008.
    15. I. Kley, S. A. S. Rezai, and Y. Traa, “Dehydroalkylation of toluene with ethane on zeolites MCM-22 and ZSM-5,” in Zeolites and related materials, Paris, France, 2008, no. 174, pp. 1119–1122.
    16. E. Klemm, A. Reitzmann, and B. Vogel, “Aromatic ring oxidation of aromatics,” in Handbook of asymmetric heterogeneous catalysis, 2nd ed., K. Ding, Ed. Weinheim: Wiley-VCH, 2008.
    17. E. Klemm et al., “Direct gas-phase epoxidation of propene with hydrogen peroxide on TS-1 zeolite in a microstructured reactor,” Industrial & engineering chemistry research, vol. 47, no. 6, Art. no. 6, 2008, doi: 10.1021/ie071343+.
    18. H. G. Karge and J. Weitkamp, Eds., Adsorption and diffusion, vol. 7. Berlin: Springer, 2008.
    19. H. G. Karge and J. Weitkamp, Eds., Acidity and basicity, vol. 6. Berlin: Springer, 2008.
    20. M. Hunger, “Solid-state NMR characterization of Broensted acid sites in solid catalysts,” presented at the TOK-CATA Seminar, Polish Academy of Sciences, Cracow, Poland, 2008.
    21. M. Hunger, “NMR spectroscopy for the characterization of surface acidity and basicity,” 2nd ed., vol. 2, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 1163–1178.
    22. M. Hunger, “In situ flow MAS NMR spectroscopy,” Progress in nuclear magnetic resonance spectroscopy, vol. 53, no. 3, Art. no. 3, 2008, doi: 10.1016/j.pnmrs.2007.08.001.
    23. M. Hunger and W. Wang, “Solid-state NMR spectroscopy,” 2nd ed., vol. 2, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 912–932.
    24. M. Hunger, “State of the art and applications of in situ solid-state NMR spectroscopy in heterogeneous catalysis,” presented at the Summer School NMRCM 2008, St. Petersburg, Russia, 2008.
    25. J. Huang, Y. Jiang, V. R. R. Marthala, B. Thomas, E. Romanova, and M. Hunger, “Characterization and acidic properties of aluminum-exchanged zeolites X and Y,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 112, no. 10, Art. no. 10, 2008, doi: 10.1021/jp7103616.
    26. J. Huang, Y. Jiang, V. R. R. Marthala, Y. S. Ooi, and M. Hunger, “Regioselective H/D exchange at the side-chain of ethylbenzene on dealuminated zeolite H-Y studied by in situ MAS NMR-UV/Vis spectroscopy,” ChemPhysChem, vol. 9, no. 8, Art. no. 8, 2008, doi: 10.1002/cphc.200800065.
    27. J. Huang, Y. Jiang, V. R. R. Marthala, and M. Hunger, “Insight into the mechanisms of the ethylbenzene disproportionation,” Journal of the American Chemical Society, JACS, vol. 130, no. 38, Art. no. 38, 2008, doi: 10.1021/ja8042849.
    28. R. Gläser and J. Weitkamp, “Ancillary techniques in laboratory units for testing solid catalysts,” 2nd ed., vol. 4, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 2045–2053.
    29. U. Filek, A. Bressel, B. Sulikowski, and M. Hunger, “Structural stability and Bronsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 112, no. 49, Art. no. 49, 2008, doi: 10.1021/jp807947v.
    30. G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp, Eds., “Handbook of heterogeneous catalysis.” Wiley-VCH, Weinheim, 2008.
    31. A. Bressel, T. Donauer, S. Sealy, and Y. Traa, “Influence of aluminum content, crystallinity and crystallite size of zeolite Pd/H-ZSM-5 on the catalytic performance in the dehydroalkylation of toluene with ethane,” Microporous and mesoporous materials, vol. 109, no. 1, Art. no. 1, 2008, doi: 10.1016/j.micromeso.2007.05.002.
    32. S. Alireza, and Rezai, Sadat, and Y. Traa, “Selectivity enhancement to the exclusive formation of ethyltoluenes and hydrogen during dehydroalkylation of toluene with ethane,” Catalysis letters, vol. 122, no. 1, Art. no. 1, 2008, doi: 10.1007/s10562-007-9348-6.
    33. P. W. Albers and J. Weitkamp, “Carbonaceous deposits,” 2nd ed., vol. 2, G. Ertl, Ed. Weinheim: Wiley-VCH, 2008, pp. 1197–1217.
  15. 2007

    1. J. Weitkamp and M. Hunger, “Acid and base catalysis on zeolites,” in Introduction to zeolite science and practice, no. 168, J. Cejka, Ed. Amsterdam: Elsevier, 2007, pp. 787–835.
    2. J. Weitkamp, Y. Yan, and J. Yu, Eds., Microporous and mesoporous materials, vol. 105, no. 1/2. 2007.
    3. Y. Traa, S. Sealy, and J. Weitkamp, “Characterization of the pore size of molecular sieves using molecular probes,” in Molecular sieves, vol. 2, P. Behrens, Ed. Berlin: Springer, 2007, pp. 103–154.
    4. Y. Traa and D. Singer, “Tetraethylorthosilicat-modifizierte Zeolithe als Katalysatoren für die Dehydroalkylierung von Toluol mit Ethan,” Chemie - Ingenieur - Technik, vol. 79, no. 6, Art. no. 6, 2007, doi: 10.1002/cite.200700031.
    5. D. Singer, S. A. Sadat Rezai, S. Sealy, and Y. Traa, “Influence of Pressure during the Alkylation of Toluene with Ethane,” Industrial & engineering chemistry research, vol. 46, no. 2, Art. no. 2, 2007, doi: 10.1021/ie060407y.
    6. M. Sabo, A. Henschel, H. Frode, E. Klemm, and S. Kaskel, “Solution infiltration of palladium into MOF-5,” Journal of materials chemistry, vol. 17, no. 36, Art. no. 36, 2007, doi: 10.1039/B706432B.
    7. R. Rachwalik, Z. Olejniczak, J. Jian, J. Huang, M. Hunger, and B. Sulikowski, “Isomerization of alpha-pinene over dealuminated ferrierite-type zeolites,” Journal of catalysis, vol. 252, no. 2, Art. no. 2, 2007, doi: 10.1016/j.jcat.2007.10.001.
    8. V. R. R. Marthala, W. Wang, R. Gläser, and M. Hunger, “Beckmann rearrangement of 15N-cyclohexanone oxime to caprolactam on silicalite-1, H-ZSM-5, and H-BZSM-5 studied by solid-state NMR spectroscopy,” presented at the 40. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 2007.
    9. V. R. R. Marthala, W. Wang, J. Jiao, Y. Jiang, J. Huang, and M. Hunger, “Effect of probe molecules with different proton affinities on the coordination of boron atoms in dehydrated zeolite H-BZSM-5,” in Microporous and mesoporous materials, Montpellier, 2007, vol. 99, no. 1–2, pp. 91–97, doi: 10.1016/j.micromeso.2006.07.034.
    10. E. Klemm, H. Döring, A. Geißelmann, and S. Schirrmeister, “Microstructured reactors in heterogenous catalysis,” Chemical engineering & technology, vol. 30, no. 12, Art. no. 12, 2007, doi: 10.1002/ceat.200700311.
    11. E. Klemm, H. Döring, A. Geißelmann, and S. Schirrmeister, “Mikrostrukturreaktoren für die heterogene Katalyse,” Chemie - Ingenieur - Technik, vol. 79, no. 6, Art. no. 6, 2007, doi: 10.1002/cite.200700052.
    12. H. G. Karge and J. Weitkamp, Eds., Characterization 2, vol. 3. Berlin: Springer, 2007.
    13. Y. Jiang, J. Huang, V. R. R. Marthala, Y. S. Ooi, J. Weitkamp, and M. Hunger, “In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration,” Microporous and mesoporous materials, vol. 105, no. 1, Art. no. 1, 2007, doi: 10.1016/j.micromeso.2007.05.028.
    14. Y. Jiang and M. Hunger, “Ex situ and in situ MAS NMR-UV/Vis spectroscopic study of hydrocarbon pool compounds and coke deposits formed by methanol conversion on H-SAPO-34,” presented at the 40. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 2007.
    15. Y. Jiang, W. Wang, and M. Hunger, “Formation of methylamines by the reaction of ammonia with surface methoxy species on zeolite H-Y and the silicoaluminophosphate H-SAPO-34,” presented at the 15th International Zeolite Conference, Beijing, China, 2007.
    16. Y. Jiang, J. Huang, J. Weitkamp, and M. Hunger, “In situ MAS NMR and UV/Vis spectroscopic studies of hydrocarbon pool compounds and coke deposits formed in the methanol-to-olefin conversion on H-SAPO-34,” in Studies in surface science and catalysis, Beijing, P.R. China, 2007, vol. B, no. 170, pp. 1137–1144.
    17. Y. Jiang, J. Huang, W. Wang, and M. Hunger, “Formation of methylamines by the reaction of ammonia with surface methoxy species on zeolite H-Y and the silicoaluminophosphate H-SAPO-34,” Studies in surface science and catalysis, vol. 170, pp. 1331–1337, 2007, doi: 10.1016/S0167-2991(07)80996-7.
    18. M. Hunger, “Moderne Methoden der In-situ-Festkörper-NMR-Spektroskopie in der heterogenen Katalyse,” Chemie - Ingenieur - Technik, CIT, vol. 79, no. 6, Art. no. 6, 2007, doi: 10.1002/cite.200700008.
    19. J. Huang, Y. Jiang, and M. Hunger, “Influence of the lanthanum exchange degree on the concentration and acid strength of bridging hydroxyl groups in zeolites La, Na-X,” presented at the 15th International Zeolite Conference, Beijing, China, 2007.
    20. J. Huang, Y. Jiang, V. R. R. Marthala, W. Wang, B. Sulikowski, and M. Hunger, “In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La,Na-Y, and H-ZSM-5,” in Microporous and mesoporous materials, Montpellier, 2007, vol. 99, no. 1–2, pp. 86–90, doi: 10.1016/j.micromeso.2006.06.041.
    21. R. Gläser, J. A. Lercher, K. Vorlop, and J. Weitkamp, Eds., “Applied catalysis. B, Environmental,” Heidelberg, 2007, vol. 70.
    22. U. Filek, A. Mohamed, M. Hunger, and B. Sulikowski, “Oxidation of norbornene over heteropolyacids and their salts,” in XIV Forum Zeolitowe, 16 - 21 wrzesnia 2007, Kocierz, Kocierz, Poland, 2007, pp. 327–337.
    23. C. Berger, R. Gläser, and J. Weitkamp, “Synthesis of large crystals of zeolite EMT and zeolite Y with elevated nSi/nAl ratio,” in Studies in surface science and catalysis, Beijing, P.R. China, 2007, vol. A, no. 170, pp. 303–310.
    24. S. Altwasser, R. Gläser, and J. Weitkamp, “Ruthenium-containing small-pore zeolites for shape-selective catalysis,” Microporous and mesoporous materials, vol. 104, no. 1, Art. no. 1, 2007, doi: 10.1016/j.micromeso.2007.02.046.
    25. V. Ali et al., “Arorincle catalysts for hydrocracking of aromatics,” Boston Park Plaza, 2007, vol. 2007, no. 2, pp. 14–17.
  16. 2006

    1. W. Wang, Y. Jiang, and M. Hunger, “Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy,” Catalysis today, vol. 113, no. 1–2, Art. no. 1–2, 2006, doi: 10.1016/j.cattod.2005.11.015.
    2. J. Morell et al., “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” Journal of materials chemistry, vol. 16, no. 27, Art. no. 27, 2006, doi: 10.1039/B603458F.
    3. V. R. R. Marthala, W. Wang, J. Jiao, and M. Hunger, “Coordination transformation of boron atoms in zeolite H-BZSM-5 upon the adsorption of probe molecules studied by solid-state NMR spectroscopy,” presented at the First International Workshop on In situ Studies and Development of Processes Involving Nanoporous Solids, La Grande Motte, France, 2006.
    4. V. R. R. Marthala, Y. Jiang, J. Huang, W. Wang, R. Gläser, and M. Hunger, “Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-BZSM-5 studied by solid-state NMR spectroscopy,” Journal of the American Chemical Society, vol. 128, no. 46, Art. no. 46, 2006, doi: 10.1021/ja066392c.
    5. M. V. Luzgin et al., “Mechanism studies of the conversion of 13C-labeled n-butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC-MS analysis,” Chemistry - a European journal, vol. 12, no. 2, Art. no. 2, 2006, doi: 10.1002/chem.200500382.
    6. J. Kärger et al., “Ein bisher einmaliger Einblick in die Diffusion durch die Beobachtung der Konzentration von Gastmolekülen in nanoporösen Wirtmaterialien,” Angewandte Chemie, vol. 118, no. 46, Art. no. 46, 2006, doi: 10.1002/ange.200602892.
    7. J. Kärger et al., “Unprecedented insight into diffusion by monitoring the concentration of guest molecules in nanoporous host materials,” Angewandte Chemie. International edition, vol. 45, no. 46, Art. no. 46, 2006, doi: 10.1002/anie.200602892.
    8. P. Krawiec, P. L. De Cola, R. Gläser, J. Weitkamp, C. Weidenthaler, and S. Kaskel, “Oxide foams for the synthesis of high-surface-area vanadium nitride catalysts,” Advanced materials, vol. 18, no. 4, Art. no. 4, 2006, doi: 10.1002/adma.200500278.
    9. P. Kortunov et al., “Internal concentration gradients of guest molecules in nanoporous host materials,” vol. 110, pp. 23821–23828, 2006.
    10. J. Jiao, W. Wang, B. Sulikowski, J. Weitkamp, and M. Hunger, “29Si and 27Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia,” Microporous and mesoporous materials, vol. 90, no. 1–3, Art. no. 1–3, 2006, doi: 10.1016/j.micromeso.2005.08.006.
    11. J. Jiao et al., “Effects of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms in dehydrated zeolite H, Na-Y,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry, vol. 110, no. 28, Art. no. 28, 2006, doi: 10.1021/jp0612533.
    12. Y. Jiang, W. Wang, V. R. R. Marthala, J. Huang, B. Sulikowski, and M. Hunger, “Response to comments on the paper: ‘Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts’ by Y. Jiang, W. Wang, V.R.R. Marthala, J. Huang, B. Sulikowski, M. Hunger,” Journal of catalysis, vol. 244, no. 1, Art. no. 1, 2006, doi: 10.1016/j.jcat.2006.08.001.
    13. Y. Jiang, W. Wang, V. R. R. Marthala, J. Huang, B. Sulikowski, and M. Hunger, “Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts,” Journal of catalysis, vol. 238, no. 1, Art. no. 1, 2006, doi: 10.1016/j.jcat.2005.11.029.
    14. Y. Jiang, M. Hunger, and W. Wang, “On the reactivity of surface methoxy species in acidic zeolites,” Journal of the American Chemical Society, vol. 128, no. 35, Art. no. 35, 2006, doi: 10.1021/ja061018y.
    15. Y. Jiang, V. R. R. Marthala, W. Wang, and M. Hunger, “Effect of organic impurities in the hydrocarbon formation via the decomposition of surface methoxy groups on solid acid catalysts,” presented at the 18. Deutsche Zeolith-Tagung, Hannover, Germany, 2006.
    16. M. Hunger and W. Wang, “Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy,” Advances in catalysis, vol. 50, pp. 149–225, 2006, doi: 10.1016/S0360-0564(06)50004-5.
    17. A. Garsuch, O. Klepel, R. R. Sattler, C. Berger, R. Gläser, and J. Weitkamp, “Synthesis of a carbon replica of zeolite Y with large crystallite size,” Carbon, vol. 44, no. 3, Art. no. 3, 2006, doi: 10.1016/j.carbon.2005.10.005.
    18. E. Dietzsch, J. Müller, N. Völkel, and E. Klemm, “Microreactor concepts for enhanced mass transfer in the two-phase hydroformylation of 1-octene,” in Proceedings of the DGMK/SCI-Conference “Synthesis Gas Chemistry,” Dresden, Germany, 2006, no. 2006,4, p. 163.
    19. P. L. De Cola, R. Gläser, and J. Weitkamp, “Non-oxidative propane dehydrogenation over Pt-Zn-containing zeolites,” Applied catalysis. A, General, vol. 306, pp. 85–97, 2006, doi: 10.1016/j.apcata.2006.03.028.
    20. S. Altwasser, R. Gläser, A. Sulaiman Lo, P. Liu, K. Chao, and J. Weitkamp, “Incorporation of RuO2 nanoparticles into MFI-type zeolites,” Microporous and mesoporous materials, vol. 89, no. 1, Art. no. 1, 2006, doi: 10.1016/j.micromeso.2005.10.017.
  17. 2005

    1. M. Xu, W. Wang, J. Weitkamp, and M. Hunger, “Dry-gel synthesis of mesoporous MCM-41 materials with modified pore structure,” vol. 219, pp. 877–890, 2005.
    2. J. Weitkamp and M. Hunger, “Preparation of zeolites via the dry-gel synthesis method,” vol. 155, pp. 1–11, 2005.
    3. J. Weitkamp and M. Hunger, “Preparation of zeolites via the dry-gel method,” in Oxide based materials, no. 155, Amsterdam: Elsevier, 2005, pp. 1–12.
    4. W. Wang, J. Jiao, Y. Jiang, S. S. Ray, and M. Hunger, “Formation and decomposition of surface ethoxy species on acidic zeolite Y,” ChemPhysChem, vol. 6, no. 8, Art. no. 8, 2005, doi: 10.1002/cphc.200500262.
    5. W. Wang, J. Jiao, Y. Jiang, and M. Hunger, “Formation and decomposition of surface ethoxy groups on acidic zeolite Y studied be the in situ MAS NMR-UV/Vis spectroscopy,” presented at the 47th Rocky Mountain Conference on Analytical Chemistry, Denver, USA, 2005.
    6. Y. Traa, H. Fingerle, and B. Gehring, “Von der Mutterlauge zum Katalysatorpellet,” Chemie - Ingenieur - Technik, CIT, vol. 77, no. 3, Art. no. 3, 2005, doi: 10.1002/cite.200407075.
    7. A. G. Stepanov, M. V. Luzgin, S. S. Arzumanov, W. Wang, M. Hunger, and D. Freude, “n-Butane conversion on sulfated zirconia,” Catalysis letters, vol. 101, no. 3, Art. no. 3, 2005, doi: 10.1007/s10562-005-4887-1.
    8. S. Sealy, D. Singer, and Y. Traa, “Direct alkylation of toluene with ethane,” in Proceedings of the DGMK/SCI-Conference Öxidation and Functionalization: Classical and Alternative Routes and Sources", Milan, Italy, 2005, no. 2005,2, pp. 245–251.
    9. S. Sealy and Y. Traa, “Direct alkylation of toluene with ethane on bifunctional zeolite catalysts,” Applied catalysis. A, General, vol. 294, no. 2, Art. no. 2, 2005, doi: 10.1016/j.apcata.2005.07.042.
    10. O, K. P. Möller, J. Weitkamp, and G. J. Hutchings, Eds., “Proceedings of the Pre-Conference School of the 14th International Zeolite Conference,” in Microporous and mesoporous materials, Stellenbosch, South Africa, 2005, vol. 82, no. 3.
    11. G. Markowz et al., “Microstructured reactors for heterogeneously catalyzed gas-phase reactions on an industrial scale,” Chemical engineering & technology, vol. 28, no. 4, Art. no. 4, 2005, doi: 10.1002/ceat.200407146.
    12. P. Kortunov et al., “Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts,” in Magnetic resonance imaging, Palaiseau, France, 2005, vol. 23, no. 2, pp. 233–237, doi: 10.1016/j.mri.2004.11.016.
    13. P. Kortunov et al., “Diffusion in Fluid Catalytic Cracking Catalysts on Various Displacement Scales and Its Role in Catalytic Performance,” Chemistry of Materials, vol. 17, no. 9, Art. no. 9, 2005, doi: 10.1021/cm050031z.
    14. P. Kortunov et al., “Sorption kinetics and intracrystalline diffusion of methanol in ferrierite,” Adsorption, vol. 11, no. 3, Art. no. 3, 2005, doi: 10.1007/s10450-005-5396-7.
    15. P. Kortunov et al., “The role of mesopores in intracrystalline transport in USY zeolite,” Journal of the American Chemical Society, vol. 127, no. 37, Art. no. 37, 2005, doi: 10.1021/ja053134r.
    16. R. Klingmann, R. Josl, Y. Traa, R. Gläser, and J. Weitkamp, “Hydrogenative regeneration of a Pt/La-Y zeolite catalyst deactivated in the isobutane/n-butene alkylation,” Applied catalysis. A, General, vol. 281, no. 1, Art. no. 1, 2005, doi: 10.1016/j.apcata.2004.11.032.
    17. J. Jiao, W. Wang, and M. Hunger, “Quantitative characterization of aluminum species in non-hydrated zeolites Y by 27Al spin-echo NMR spectroscopy,” presented at the 7. Deutsche Zeolith-Tagung, Gießen, Germany, 2005.
    18. J. Jiao et al., “Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T,” vol. 7, pp. 3221–3226, 2005, doi: 10.1039/B508358C.
    19. J. Jiao, S. S. Ray, W. Wang, J. Weitkamp, and M. Hunger, “Effect of dehydration on the local structure of framework silicon atoms in zeolites Y investigated by solid-state NMR spectroscopy,” Zeitschrift für anorganische und allgemeine Chemie, ZAAC, vol. 631, no. 2–3, Art. no. 2–3, 2005, doi: 10.1002/zaac.200400329.
    20. M. Hunger, “Applications of in situ spectroscopy in zeolite catalysis,” in Microporous and mesoporous materials, Stellenbosch, South Africa, 2005, vol. 82, no. 3, pp. 241–255, doi: 10.1016/j.micromeso.2005.01.037.
    21. M. Hunger, “Ex situ and in situ solid-state NMR investigations of activated zeolite catalysts and heterogeneous reaction systems,” presented at the 37th Polish Annual Conference on Catalysis, Cracow, Poland, 2005.
    22. M. Hunger, “In situ spectroscopy in heterogeneous catalysis,” presented at the TOK-CATA Seminar, Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Cracow, Poland, 2005.
    23. M. Hunger, “Aluminum distribution in non-hydrated zeolite catalysts studied by ex situ and in situ solid-state NMR spectroscopy,” presented at the 47th Rocky Mountain Conference on Analytical Chemistry, Denver, USA, 2005.
    24. M. Hunger, “Solid-state NMR spectroscopy in heterogeneous catalysis,” presented at the Lecture Series Heterogeneous Catalysis, Fritz Haber Institute, Max Planck Gesellschaft, Berlin, 2005.
    25. M. Hunger, “In situ solid-state NMR spectroscopy in zeolite science.” National Laboratory of Chemistry (NCL), Poona, India, 2005.
    26. G. Emig and E. Klemm, Technische Chemie, 5th ed. Berlin: Springer, 2005.
    27. C. Berger, R. Gläser, R. A. Rakoczy, and J. Weitkamp, “The synthesis of large crystals of zeolite Y re-visited,” Microporous and mesoporous materials, vol. 83, no. 1–3, Art. no. 1–3, 2005, doi: 10.1016/j.micromeso.2005.04.009.
    28. S. Altwasser, C. Welker, Y. Traa, and J. Weitkamp, “Catalytic cracking of n-octane on small-pore zeolites,” Microporous and mesoporous materials, vol. 83, no. 1–3, Art. no. 1–3, 2005, doi: 10.1016/j.micromeso.2005.04.028.
  18. 2004

    1. J. Weitkamp and R. Gläser, “Katalyse,” in Methodische Grundlagen, 5th ed., vol. 1, R. Dittmeyer, Ed. Weinheim: Wiley-VCH, 2004, pp. 645–718.
    2. W. Wang, P. L. De Cola, R. Gläser, I. I. Ivanova, J. Weitkamp, and M. Hunger, “Methylation of phenol by methanol on acidic zeolite H-Y investigated by in situ CF MAS NMR spectroscopy,” Catalysis Letters, vol. 94, no. 1, Art. no. 1, 2004, doi: 10.1023/B:CATL.0000019341.67169.ac.
    3. Y. Traa and B. Gehring, “X-ray mapping as a tool to characterize mixtures of large zeolite ZSM-5 crystals with amorphous impurities,” Microporous and mesoporous materials, vol. 75, no. 1–2, Art. no. 1–2, 2004, doi: 10.1016/j.micromeso.2004.07.003.
    4. A. Simon, J. Köhler, P. Keller, J. Weitkamp, A. Buchholz, and M. Hunger, “Phase transformation of zeolites Cs,Na-Y and Cs,Na-X impregnated with cesium hydroxide,” Microporous and mesoporous materials, vol. 68, no. 1–3, Art. no. 1–3, 2004, doi: 10.1016/j.micromeso.2003.12.019.
    5. G. Markowz et al., “Mikrostrukturierte Reaktoren für heterogen katalysierte Gasphasenreaktionen im industriellen Maßstab,” Chemie - Ingenieur - Technik, CIT, vol. 76, no. 5, Art. no. 5, 2004, doi: 10.1002/cite.200400073.
    6. E. Klemm and C. H. Vogel, “Technische Chemie 2003,” Nachrichten aus der Chemie, vol. 52, no. 3, Art. no. 3, 2004, doi: 10.1002/nadc.20040520314.
    7. E. Klemm, M. Rudek, G. Markowz, and R. Schütte, “Mikroverfahrenstechnik,” in Neue Technologien, 5th ed., vol. 2, R. Dittmeyer, K. Winnacker, and L. Küchler, Eds. Weinheim: Wiley-VCH, 2004.
    8. H. G. Karge and J. Weitkamp, Eds., Characterization 1, vol. 4. Berlin: Springer, 2004.
    9. R. Josl, R. Klingmann, Y. Traa, R. Gläser, and J. Weitkamp, “Regeneration of zeolite catalysts deactivated in isobutane/butene alkylation,” Catalysis communications, vol. 5, no. 5, Art. no. 5, 2004, doi: 10.1016/j.catcom.2004.02.005.
    10. J. Jiao, W. Wang, A. Buchholz, and M. Hunger, “PInvestigation of the cationic state of extra-framework aluminum in steamed zeolites H-Y by solid-state NMR spectroscopy,” presented at the 16. Deutsche Zeolith-Tagung, Dresden, Germany, 2004.
    11. J. Jiao, S. Altwasser, W. Wang, J. Weitkamp, and M. Hunger, “State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy,” The Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 108, no. 38, Art. no. 38, 2004, doi: 10.1021/jp040081b.
    12. I. I. Ivanova et al., “An in situ 13C MAS NMR study of the zeolite-catalyzed alkylation of polar aromatics,” in Studies in surface science and catalysis, Cape Town, South Africa, 2004, vol. C, no. 154, pp. 2221–2227.
    13. M. Hunger, “In situ solid-state NMR investigations of the conversion of methanol on acidic zeolites under continuous-flow conditions,” presented at the Pre-Conference School of the 13th International Conference on Catalysis, Caen, France, 2004.
    14. M. Hunger and W. Wang, “Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique,” vol. 2004, pp. 584–585, 2004, doi: 10.1039/B315779B.
    15. M. Hunger, “In situ NMR spectroscopy in heterogeneous catalysis,” Catalysis today, vol. 97, no. 1, Art. no. 1, 2004, doi: 10.1016/j.cattod.2004.03.061.
    16. M. Hunger and J. Weitkamp, “Nuclear magnetic resonance,” in In-situ spectroscopy of catalysts, B. M. Weckhuysen, Ed. Stevenson Ranch, Calif.: American Scientific Publishers, 2004, pp. 177–218.
    17. M. Hunger and J. Weitkamp, “In situ magnetic resonance techniques,” in In-situ spectroscopy of catalysts, B. M. Weckhuysen, Ed. Stevenson Ranch, Calif.: American Scientific Publishers, 2004, pp. 177–218.
    18. M. Hunger and E. Brunner, “Characterization I - NMR spectroscopy,” in Molecular sieves, vol. 1, no. 4, P. Behrens, Ed. Berlin: Springer, 2004, pp. 201–293.
    19. M. Hunger, S. Altwasser, S. Steuernagel, and J. Weitkamp, “Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy,” in Studies in surface science and catalysis, Cape Town, South Africa, 2004, vol. C, no. 154, pp. 3098–3105.
    20. U. Hiemer, E. Klemm, F. Scheffler, T. Selvam, W. Schwieger, and G. Emig, “Microreaction engineering studies of the hydroxylation of benzene with nitrous oxide,” in The chemical engineering journal, Lausanne, Switzerland, 2004, vol. 101, no. 1–3, pp. 17–22, doi: 10.1016/j.cej.2003.11.004.
    21. S. Gomm, R. Gläser, and J. Weitkamp, “In situ investigation of cumene synthesis over dealuminated zeolite catalysts by means of a tapered-element oscillating microbalance,” in Studies in surface science and catalysis, Cape Town, South Africa, 2004, vol. C, no. 154, pp. 2125–2132.
    22. R. Gläser and J. Weitkamp, “The application of zeolites in catalysis,” in Basic principles in applied catalysis, no. 75, M. Baerns, Ed. Berlin: Springer, 2004, pp. 159–212.
    23. A. Buchholz, W. Wang, M. Xu, A. Arnold, and M. Hunger, “Sequential steps of ammoniation of the microporous silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 108, no. 10, Art. no. 10, 2004, doi: 10.1021/jp030249d.
    24. A. Buchholz, W. Wang, J. Jiao, and M. Hunger, “Preparation and characterization of mesoporous silicoaluminophosphates,” presented at the 16. Deutsche Zeolith-Tagung, Dresden, Germany, 2004.
    25. A. Arnold, M. Hunger, and J. Weitkamp, “Dry-gel synthesis of zeolites AlEU-1 and GaEU-1,” Microporous and mesoporous materials, vol. 67, no. 2–3, Art. no. 2–3, 2004, doi: 10.1016/j.micromeso.2003.10.010.
    26. S. Altwasser, A. Raichle, Y. Traa, and J. Weitkamp, “Herstellung galliumhaltiger Katalysatoren durch Festkörperreaktion saurer Zeolithe mit elementarem Gallium,” Chemie - Ingenieur - Technik, vol. 76, no. 1–2, Art. no. 1–2, 2004, doi: 10.1002/cite.200403326.
    27. S. Altwasser, J. Jiao, S. Steuernagel, J. Weitkamp, and M. Hunger, “Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy,” presented at the 14th International Zeolite Conference, Cape Town, South Africa, 2004.
    28. S. Altwasser, A. Raichle, Y. Traa, and J. Weitkamp, “Preparation of gallium-containing catalysts by solid-state reaction of acidic zeolites with elemental gallium,” Chemical engineering & technology, vol. 27, no. 12, Art. no. 12, 2004, doi: 10.1002/ceat.200407044.
  19. 2003

    1. M. Xu and M. Hunger, “H/D exchange of acetone-d6 adsorbed on zeolite H-ZSM-5,” presented at the 15. Deutsche Zeolith-Tagung, Kaiserslautern, Germany, 2003.
    2. M. Xu, W. Wang, and M. Hunger, “Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange,” Chemical communications, ChemComm, vol. 2003, no. 6, Art. no. 6, 2003, doi: 10.1039/B212701F.
    3. J. Weitkamp, “Katalyse,” Chemie - Ingenieur - Technik, vol. 75, no. 10, Art. no. 10, 2003, doi: 10.1002/cite.200303304.
    4. W. Wang, A. Buchholz, A. Arnold, M. Xu, J. Weitkamp, and M. Hunger, “Synthesis of quaternary ammonium cations on acidic zeolite catalysts,” presented at the XXXVI. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 2003.
    5. W. Wang, A. Buchholz, I. I. Ivanova, J. Weitkamp, and M. Hunger, “Synthesis and immobilization of quaternary ammonium cations in acidic zeolites,” vol. 2003, pp. 2600–2601, 2003.
    6. W. Wang, M. Xu, A. Buchholz, A. Arnold, and M. Hunger, “Time-resolved observation of the decomposition process of N,N,N-Trimethylanilinium cations on zeolite H-Y by in situ stopped-flow 13C MAS NMR spectroscopy,” in Magnetic resonance imaging, University of Ulm, Germany, 2003, vol. 21, no. 3, p. 329 332, doi: 10.1016/S0730-725X(03)00163-2.
    7. W. Wang, A. Buchholz, M. Seiler, and M. Hunger, “Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts,” Journal of the American Chemical Society, vol. 125, no. 49, Art. no. 49, 2003, doi: 10.1021/ja0304244.
    8. W. Wang, A. Buchholz, A. Arnold, M. Xu, and M. Hunger, “Effect of surface methoxy groups on the 27Al quadrupole parameters of framework aluminum atoms in calcined zeolite H-Y,” vol. 370, pp. 88–93, 2003.
    9. Y. Traa and D. Singer, “Is the production of hydrogen and propylene from methane and ethylene feasible?,” in Proceedings of the DGMK Conference “Innovation in the Manufacture and Use of Hydrogen,” Dresden, Germany, 2003, no. 2003,2, pp. 229–236.
    10. Y. Traa, A. Raichle, F. Fuder, M. Rupp, and J. Weitkamp, “A novel process for converting surplus aromatics into a high-value synthetic steamcracker feed,” in Excelling in refining and delivering quality petrochemicals, Rio de Janeiro, Brazil, 2003, vol. 3, pp. 243–256.
    11. Y. Traa, “Entwicklungen und Trends in der Raffinerietechnik,” vol. 119, pp. 82–85, 2003.
    12. M. Seiler, W. Wang, A. Buchholz, and M. Hunger, “Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion,” Catalysis letters, vol. 88, no. 3, Art. no. 3, 2003, doi: 10.1023/A:1024018023895.
    13. R. A. Rakoczy and Y. Traa, “Nanocrystalline zeolite A: synthesis, ion exchange and dealumination,” Microporous and mesoporous materials, vol. 60, no. 1, Art. no. 1, 2003, doi: 10.1016/S1387-1811(03)00318-4.
    14. A. Raichle, Y. Traa, and J. Weitkamp, “Preparation of a high-quality synthetic steamcracker feedstock from methylcyclohexane on acidic zeolite H-ZSM-5,” in Applied catalysis. B, Environmental, Tokyo, Japan, 2003, vol. 41, no. 1–2, pp. 193–205, doi: 10.1016/S0926-3373(02)00211-4.
    15. A. Raichle, Y. Traa, F. Fuder, M. Rupp, and J. Weitkamp, “Improving the yield of ethene in the steamcracker by recycling of pyrolysis gasoline using Pd-, Pt-, Ir-, or Ga-doped zeolites ZSM-5,” vol. 29, no. 29, Art. no. 29, 2003.
    16. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, W. Wang, M. Hunger, and J. Weitkamp, “Mechanism of aniline methylation on zeolite catalysts investigated by in situ13C NMR spectroscopy,” Kinetics and catalysis, vol. 44, no. 5, Art. no. 5, 2003, doi: 10.1023/A:1026158525990.
    17. M. Hunger, “Modern application of in situ NMR spectroscopy in heterogeneous catalysis,” presented at the XXXVI. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 2003.
    18. M. Hunger, “Recent applications of in situ NMR spectroscopy in heterogeneous catalysis,” presented at the International Congress on Operando Spectroscopy, Lunteren, The Netherlands, 2003.
    19. M. Hunger, “In situ NMR spectroscopy in heterogeneous catalysis,” presented at the Pre-Conference School of IPCAT-3, Chinchu, Taiwan, 2003.
    20. R. Gläser and J. Weitkamp, “Supercritical carbon dioxide as a reaction medium for the zeolite-catalyzed alkylation of naphthalene,” Industrial & engineering chemistry research, vol. 42, no. 25, Art. no. 25, 2003, doi: 10.1021/ie000153v.
    21. F. Fuder, D. Landwehr, G. Geipel, C. Herkt-Bruns, and J. Weitkamp, “A novel route for converting aromatics into hydrogen via steam reforming,” in Excelling in refining and delivering quality petrochemicals, Rio de Janeiro, Brazil, 2003, vol. 3, pp. 395–403.
    22. A. Buchholz, W. Wang, A. Arnold, M. Xu, and M. Hunger, “Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy,” Microporous and mesoporous materials, vol. 57, no. 2, Art. no. 2, 2003, doi: 10.1016/S1387-1811(02)00562-0.
    23. C. Berger, A. Raichle, R. A. Rakoczy, Y. Traa, and J. Weitkamp, “Hydroconversion of methylcyclohexane on TEOS-modified H-ZSM-5 zeolite catalysts,” Microporous and mesoporous materials, vol. 59, no. 1, Art. no. 1, 2003, doi: 10.1016/S1387-1811(03)00270-1.
    24. A. Arnold, S. Steuernagel, M. Hunger, and J. Weitkamp, “Insight into the dry-gel synthesis of gallium-rich zeolite GaBeta,” Microporous and mesoporous materials, vol. 62, no. 1–2, Art. no. 1–2, 2003, doi: 10.1016/S1387-1811(03)00397-4.
    25. S. Altwasser, S. Steuernagel, J. Weitkamp, and M. Hunger, “Influence of the coordination change of aluminum atoms on the Broensted acidity of dealuminated zeolites,” presented at the 15. Deutsche Zeolith-Tagung, Kaiserslautern, Germany, 2003.
  20. 2002

    1. M. Xu and M. Hunger, “Preparation of strong Broensted acid sites on MCM-41 by treatment with AlCl3,” presented at the 14. Deutsche Zeolith-Tagung, Frankfurt am Main, Germany, 2002.
    2. M. Xu, A. Arnold, A. Buchholz, W. Wang, and M. Hunger, “Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 106, no. 47, Art. no. 47, 2002, doi: 10.1021/jp021308a.
    3. M. Xu, W. Wang, M. Seiler, A. Buchholz, and M. Hunger, “Improved Bronsted acidity of mesoporous AlMCM-41 material treated with ammonium fluoride,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 106, no. 12, Art. no. 12, 2002, doi: 10.1021/jp014222a.
    4. J. Weitkamp, U. Rymsa, M. Wark, and G. Schulz-Ekloff, “Preparation of oxide, sulfide and other chalcogenide clusters in molecular sieves,” in Molecular sieves, vol. 1, no. 3, Berlin: Springer, 2002, pp. 337–414.
    5. W. Wang, M. Seiler, I. I. Ivanova, U. Sternberg, J. Weitkamp, and M. Hunger, “Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy,” Journal of the American Chemical Society, vol. 124, no. 25, Art. no. 25, 2002, doi: 10.1021/ja012675n.
    6. W. Wang, M. Seiler, J. Weitkamp, and M. Hunger, “In situ stopped-flow (SF) MAS NMR investigation of the formation and decomposition of methylanilinium cations on acidic zeolite H-Y,” presented at the XXXV. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 2002.
    7. B. Vogel, C. Schneider, and E. Klemm, “The synthesis of cresol from toluene and N2O on HAlZSM-5,” Catalysis letters, vol. 79, no. 1, Art. no. 1, 2002, doi: 10.1023/A:1015392217345.
    8. S. Vasenkov, O. Geier, U. Schemmert, J. Kärger, R. A. Rakoczy, and J. Weitkamp, “Application of interference microscopy and Monte Carlo simulations for comparative studies of intracrystalline diffusion in zeolites,” in Fundamentals of adsorption 7, Nagasaki, 2002, pp. 53–60.
    9. A. Unger, U. Hiemer, A. Reitzmann, E. Klemm, and W. Schwieger, “Direct hydroxylation of benzene to phenol,” in Proceedings of the DGMK Conference “Chances for Innovative Processes at the Interface Between Refining and Petrochemistry,” Berlin, Germany, 2002, no. 2002,4, p. 277.
    10. Y. Traa and R. W. Thompson, “Controlled co-crystallization of zeolites A and X,” vol. 12, pp. 496–499, 2002.
    11. Y. Traa and J. Weitkamp, “Characterization of the pore width of zeolites and related materials by means of molecular probes,” vol. 2, F. Schüth, K. S. W. Sing, and J. Weitkamp, Eds. Weinheim: Wiley-VCH, 2002, pp. 1015–1057.
    12. F. Schüth, K. S. W. Sing, and J. Weitkamp, Eds., “Handbook of porous solids.” Wiley-VCH, Weinheim, 2002.
    13. A. Reitzmann, E. Klemm, and G. Emig, “Kinetics of the hydroxylation of benzene with N2O on modified ZSM-5 zeolites,” in Chemical engineering journal, Limerick, 2002, vol. 90, no. 1, pp. 149–164, doi: 10.1016/S1385-8947(02)00076-1.
    14. R. A. Rakoczy, M. Breuninger, M. Hunger, Y. Traa, and J. Weitkamp, “Template-free synthesis of zeolite ferrierite and characterization of its acid sites,” Chemical engineering & technology, vol. 25, no. 3, Art. no. 3, 2002, doi: 10.1002/1521-4125(200203)25:3<273::AID-CEAT273>3.0.CO;2-4.
    15. A. Raichle, Y. Traa, and J. Weitkamp, “Producing a high-quality synthetic steamcracker feedstock from different aromatic model components of pyrolysis gasoline on bifunctional zeolite catalysts,” Catalysis today, vol. 75, no. 1, Art. no. 1, 2002, doi: 10.1016/S0920-5861(02)00054-8.
    16. A. Raichle, Y. Traa, and J. Weitkamp, “Preparation of a synthetic steamcracker feedstock from pyrolysis gasoline on zeolite catalysts,” vol. 118, pp. 83–87, 2002.
    17. A. Küksal, E. Klemm, and G. Emig, “Reaction kinetics of the liquid-phase hydrogenation of succinic anhydride on CuZnO-catalysts with varying copper-to-zinc ratios in a three-phase slurry reactor,” Applied catalysis. A, General, vol. 228, no. 1, Art. no. 1, 2002, doi: 10.1016/S0926-860X(01)00978-4.
    18. E. Klemm, M. Kästner, and G. Emig, “Transport phenomena and reaction in porous media,” F. Schüth, Ed. Weinheim: Wiley-VCH, 2002.
    19. H. G. Karge and J. Weitkamp, Eds., Post synthesis modification 1, vol. 3. Berlin: Springer, 2002.
    20. I. I. Ivanova et al., “Aniline methylation on modified zeolites with acidic, basic and redox properties,” in Impact of zeolites ond other porous materials on the new technologies at the beginning of the new millenium, Taormina, Italy, 2002, no. 142,A, pp. 659–666.
    21. M. Hunger, “Applications of in situ NMR spectroscopy in heterogeneous catalysis.” Institute of Physical Chemistry at the LMU Munich, Germany, 2002.
    22. M. Hunger, “Applications of in situ MAS NMR spectroscopy in zeolite science.” Faculties of Physics und Chemistry at the University of Leipzig, Germany, 2002.
    23. S. Gomm, R. Gläser, and J. Weitkamp, “In situ observation of coke deposition on zeolite catalysts using a tapered-element oscillating microbalance (TEOM),” Chemical engineering & technology, vol. 25, no. 10, Art. no. 10, 2002, doi: 10.1002/1521-4125(20021008)25:10<962::AID-CEAT962>3.0.CO;2-J.
    24. R. Gläser and J. Weitkamp, “Surface hydrophobicity or hydrophilicity of porous solids,” vol. 1, F. Schüth, K. S. W. Sing, and J. Weitkamp, Eds. Weinheim: Wiley-VCH, 2002, pp. 395–431.
    25. G. Emig, E. Gallei, B. Lücke, and J. Weitkamp, Eds., Proceedings of the DGMK Conference “Chances for Innovative Processes at the Interface Between Refining and Petrochemistry,” no. 2002,4. DGMK, 2002.
    26. R. Dotzel and E. Klemm, “Isomerisation of propadiene to propyne,” in Proceedings of the DGMK Conference “Chances for Innovative Processes at the Interface Between Refining and Petrochemistry,” Berlin, Germany, 2002, no. 2002,4, p. 203.
    27. T. Donauer, R. Gläser, and J. Weitkamp, “Copper-promoted Pt-catalysts for the non-oxidative propane dehydrogenation,” in Proceedings of the DGMK Conference “Chances for Innovative Processes at the Interface Between Refining and Petrochemistry,” Berlin, Germany, 2002, no. 2002,4, pp. 225–232.
    28. A. Buchholz and M. Hunger, “Effect of water and ammonia on H-SAPO-34 and H-SAPO-37 studied by in situ CF MAS NMR spectroscopy,” presented at the 6th International Conference on Magnetic Resonance on Porous Media, Ulm, 2002.
    29. A. Buchholz, W. Wang, M. Xu, A. Arnold, and M. Hunger, “Thermal stability and dehydroxylation of Bronsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy,” Microporous and mesoporous materials, vol. 56, no. 3, Art. no. 3, 2002, doi: 10.1016/S1387-1811(02)00491-2.
    30. A. Arnold, M. Hunger, and J. Weitkamp, “NMR investigations of the dry gel synthesis of zeolite beta,” presented at the 6th International Conference on Magnetic Resonance on Porous Media, Ulm, 2002.
  21. 2001

    1. Th. Zeiser, P. Lammers, E. Klemm, Y. W. Li, J. Bernsdorf, and G. Brenner, “CFD-calculation of flow, dispersion and reaction in a catalyst filled tube by the lattice Boltzmann method,” Chemical engineering science, vol. 56, no. 4, Art. no. 4, 2001, doi: 10.1016/S0009-2509(00)00398-5.
    2. J. Weitkamp, M. Hunger, and U. Rymsa, “Base catalysis on microporous and mesoporous materials,” Microporous and mesoporous materials, vol. 48, no. 1, Art. no. 1, 2001, doi: 10.1016/S1387-1811(01)00366-3.
    3. J. Weitkamp, A. Raichle, and Y. Traa, “Preparation of a synthetic steamcracker feedstock from surplus aromatics,” vol. 436, pp. 45–54, 2001.
    4. J. Weitkamp, A. Raichle, and Y. Traa, “Preparation of a synthetic steamcracker feedstock from surplus aromatics on zeolite catalysts,” in Technology and cooperation - a fundamental strategy for Asia’s petroleum industry, Shanghai, 2001, pp. 1–15.
    5. J. Weitkamp, Y. Traa, and A. Raichle, “Aromaten,” Chemie - Ingenieur - Technik, vol. 73, no. 8, Art. no. 8, 2001, doi: 10.1002/1522-2640(200108)73:8<947::AID-CITE947>3.0.CO;2-4.
    6. J. Weitkamp, A. Raichle, and Y. Traa, “Novel zeolite catalysis to create value from surplus aromatics,” vol. 222, pp. 277–297, 2001.
    7. J. Weitkamp, R. A. Rakoczy, M. Breuninger, M. Hunger, and Y. Traa, “Templatfreie Synthese von Zeolith Ferrierit und Charakterisierung seiner sauren Zentren,” Chemie - Ingenieur - Technik, vol. 73, no. 8, Art. no. 8, 2001, doi: 10.1002/1522-2640(200108)73:8<1024::AID-CITE1024>3.0.CO;2-A.
    8. M. Weihe, M. Hunger, M. Breuninger, H. G. Karge, and J. Weitkamp, “Influence of the nature of residual alkali cations on the catalytic activity of zeolites X, Y, and EMT in their Bronsted acid forms,” Journal of catalysis, vol. 198, no. 2, Art. no. 2, 2001, doi: 10.1006/jcat.2000.3137.
    9. W. Wang, M. Seiler, and M. Hunger, “Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 105, no. 50, Art. no. 50, 2001, doi: 10.1021/jp0129784.
    10. W. Wang, M. Seiler, I. I. Ivanova, J. Weitkamp, and M. Hunger, “In situ stopped-flow (SF) MAS NMR spectroscopy,” vol. 2001, pp. 1362–1363, 2001.
    11. Y. Traa, D. M. Murphy, R. D. Farley, and G. J. Hutchings, “An EPR study on the enantioselective aziridination properties of a CuNaY zeolite,” vol. 3, pp. 1073–1080, 2001, doi: 10.1039/B010083H.
    12. M. Seiler, W. Wang, and M. Hunger, “Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 105, no. 34, Art. no. 34, 2001, doi: 10.1021/jp004455m.
    13. M. Seiler, W. Wang, and M. Hunger, “Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ MAS NMR spectroscopy,” presented at the XXXIV. Jahrestreffen Deutscher Katalytiker, Weimar, Germany, 2001.
    14. J. Schirmer, J. S. Kim, and E. Klemm, “Catalytic degradation of polyethylene using thermal gravimetric analysis and a cycled-spheres-reactor,” Journal of Analytical and Applied Pyrolysis, vol. 60, no. 2, Art. no. 2, 2001, doi: 10.1016/S0165-2370(00)00197-2.
    15. U. Rymsa, M. Hunger, and J. Weitkamp, “Catalytic in situ infrared spectroscopic study of n-butyraldehyde aldol condensation,” in Zeolites and mesoporous materials at the dawn of the 21st century, Montpellier, France, 2001, no. 135, p. 235.
    16. A. Raichle, Y. Traa, F. Fuder, M. Rupp, and J. Weitkamp, “Haag-Dessau-Katalysatoren zur Ringöffnung von Cycloalkanen,” Angewandte Chemie, vol. 113, no. 7, Art. no. 7, 2001, doi: 10.1002/1521-3757(20010401)113:7<1268::AID-ANGE1268>3.0.CO;2-N.
    17. A. Raichle, H. Scharl, Y. Traa, and J. Weitkamp, “Producing a synthetic steamcracker feed from cycloalkanes (or aromatics) on various zeolite catalysts,” in Zeolites and mesoporous materials at the dawn of the 21st century, Montpellier, France, 2001, no. 135, p. 302.
    18. A. Raichle, Y. Traa, F. Fuder, M. Rupp, and J. Weitkamp, “Haag-Dessau catalysts for ring opening of cycloalkanes,” Angewandte Chemie. International Edition, vol. 40, no. 7, Art. no. 7, 2001, doi: 10.1002/1521-3773(20010401)40:7<1243::AID-ANIE1243>3.0.CO;2-7.
    19. A. Raichle, Y. Traa, and J. Weitkamp, “Preparation of a synthetic steamcracker feedstock from pyrolysis gasoline on zeolite catalysts,” in Proceedings of the DGMK Conference “Creating Value from Light Olefins - Production and Conversion,” Hamburg, Germany, 2001, no. 2001,4, pp. 49–56.
    20. A. Raichle, S. Moser, Y. Traa, M. Hunger, and J. Weitkamp, “Gallium-containing zeolites,” Catalysis communications, vol. 2, no. 1, Art. no. 1, 2001, doi: 10.1016/S1566-7367(01)00003-6.
    21. A. Raichle, M. Ramin, D. Singer, M. Hunger, Y. Traa, and J. Weitkamp, “Influence of the aluminum content of zeolite H-ZSM-5 on the conversion of methylcyclohexane into a high-quality synthetic steamcracker feedstock,” Catalysis communications, vol. 2, no. 2, Art. no. 2, 2001, doi: 10.1016/S1566-7367(01)00012-7.
    22. E. Klemm, B. Amon, H. Redlingshöfer, E. Dieterich, and G. Emig, “Deactivation kinetics in the hydrogenation of nitrobenzene to aniline on the basis of a coke formation kinetics - investigations in an isothermal catalytic wall reactor,” in Chemical engineering science, Cracow, Poland, 2001, vol. 56, no. 4, pp. 1347–1353, doi: 10.1016/S0009-2509(00)00357-2.
    23. H. Kath, R. Gläser, and J. Weitkamp, “Beckmann rearrangement of cyclohexanone oxime on MFI-type zeolites,” vol. 24, no. 2, Art. no. 2, 2001, doi: 10.1002/1521-4125(200102)24:2<150::AID-CEAT150>3.0.CO;2-#.
    24. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, Yu. G. Kolyagin, M. Hunger, and J. Weitkamp, “Mechanistic study of aniline methylation over acidic and basic zeolites Y,” in Zeolites and mesoporous materials at the dawn of the 21st century, Montpellier, France, 2001, no. 135, p. 232.
    25. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, M. Hunger, Yu. G. Kolyagin, and J. Weitkamp, “Surface species formed during aniline methylation on zeolite H-Y investigated by in situ MAS NMR spectroscopy,” vol. 203, pp. 375–381, 2001.
    26. M. Hunger and J. Weitkamp, “In situ IR, NMR, EPR, and UV/Vis spectroscopy,” vol. 40, pp. 2954–2971, 2001.
    27. M. Hunger, A. Buchholz, and U. Schenk, “High-temperature MAS NMR investigation of the mobility of cations and guest compounds in zeolites X and Y,” presented at the 13th International Zeolite Conference, Montpellier, France, 2001.
    28. M. Hunger and J. Weitkamp, “In-situ-IR-, -NMR-, -EPR- und -UV/Vis-Spektroskopie. Wege zu neuen Erkenntnissen in der heterogenen Katalyse,” vol. 113, pp. 3040–3059, 2001.
    29. M. Hunger, “Modern applications of in situ NMR spectroscopy in heterogeneous catalysis,” presented at the 1th EFCATS School on Catalysis, Prague, Czech Republic, 2001.
    30. M. Hunger, M. Seiler, and A. Buchholz, “In situ MAS NMR spectroscopic investigation of the conversion of methanol to olefins on silicoaluminophosphates SAPO-34 and SAPO-18 under continuous flow conditions,” Catalysis letters, vol. 74, no. 1, Art. no. 1, 2001, doi: 10.1023/A:1016687014695.
    31. M. Hunger, A. Buchholz, and U. Schenk, “High temperature MAS NMR investigation of the mobility of cations and guest compounds in zeolites Y and X,” vol. 135, pp. 14-P-17, 2001.
    32. S. Gomm, R. Gläser, and J. Weitkamp, “In-situ-Bestimmung von Koksdepositen auf Zeolithkatalysatoren mittels einer oszillierenden Mikrowaage (TEOM),” Chemie - Ingenieur - Technik, vol. 73, no. 12, Art. no. 12, 2001, doi: 10.1002/1522-2640(200112)73:12<1584::AID-CITE1584>3.0.CO;2-4.
    33. R. Gläser, H. Kath, and J. Weitkamp, “Beckmann rearrangement of cyclohexanone oxime over mesoporous MCM-41- and MCM-48-type materials,” in Zeolites and mesoporous materials at the dawn of the 21st century, Montpellier, France, 2001, no. 135, p. 139.
    34. O. Geier et al., “Interference microscopy investigation of the influence of regular intergrowth effects in MFI-type zeolites on molecular uptake,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry, vol. 105, no. 42, Art. no. 42, 2001, doi: 10.1021/jp010777u.
    35. O. Geier, S. Vasenkov, E. Lehmann, J. Kärger, R. A. Rakoczy, and J. Weitkamp, “Interference microscopy as a tool of choice for investigating the role of crystal morphology in diffusion studies,” in Zeolites and mesoporous materials at the dawn of the 21st century, Montpellier, France, 2001, no. 135, p. 154.
    36. S. Ernst, C. Bischof, M. Hartmann, and J. Weitkamp, “Potential and limitations of octane boosting through isomerization of C7 alkanes over bifunctional zeolites,” in Refining, fuels, lubricants and environment, Calgary, Alberta, Canada, 2001, vol. 3, pp. 27–38.
    37. G. Emig, H.-J. Krämer, and J. Weitkamp, Eds., Proceedings of the DGMK Conference “Creating Value from Light Olefins - Production and Conversion,” no. 2001,4. nDeutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, 2001.
    38. T. Donauer, R. Gläser, and J. Weitkamp, “Non-oxidative propane dehydrogenation over supported Pt-Zn-catalysts,” in Proceedings of the DGMK Conference “Creating Value from Light Olefins - Production and Conversion,” Hamburg, Germany, 2001, no. 2001,4, pp. 203–210.
    39. S. Caldarelli, A. Buchholz, and M. Hunger, “Investigation of sodium cations in dehydrated zeolites LSX, X, and Y by 23Na off-resonance RIACT triple-quantum and high-speed MAS NMR spectroscopy,” Journal of the American Chemical Society, vol. 123, no. 29, Art. no. 29, 2001, doi: 10.1021/ja0102538.
    40. M. Breuninger, C. Berger, R. A. Rakoczy, M. Hunger, and J. Weitkamp, “Cumolsynthese an Zeolithen,” Chemie - Ingenieur - Technik, vol. 73, no. 7, Art. no. 7, 2001, doi: 10.1002/1522-2640(200107)73:7<869::AID-CITE869>3.0.CO;2-X.
    41. A. Arnold, M. Hunger, and J. Weitkamp, “Dry-gel-Synthese von Zeolithen des Typs GaBeta und deren quantitative Charakterisierung mittels NMR-Spektroskopie,” Chemie - Ingenieur - Technik, vol. 73, no. 12, Art. no. 12, 2001, doi: 10.1002/1522-2640(200112)73:12<1588::AID-CITE1588>3.0.CO;2-H.
  22. 2000

    1. J. Weitkamp, A. Raichle, Y. Traa, M. Rupp, and F. Fuder, “Preparation of a synthetic steamcracker feed from cycloalkanes (or aromatics) on zeolite catalysts,” vol. 2000, pp. 403–404, 2000, doi: 10.1039/A910284L.
    2. J. Weitkamp, A. Raichle, Y. Traa, M. Rupp, and F. Fuder, “Direct conversion of aromatics into a synthetic steamcracker feed using bifunctional zeolite catalysts,” vol. 2000, pp. 1133–1134, 2000, doi: 10.1039/B003422N.
    3. J. Weitkamp, “Zeolites and catalysis,” Solid state ionics, vol. 131, no. 1, Art. no. 1, 2000, doi: 10.1016/S0167-2738(00)00632-9.
    4. S. Vasenkov, J. Kärger, D. Freude, R. A. Rakoczy, and J. Weitkamp, “Percolation diffusion of guest molecules in NaCaA zeolites,” Journal of molecular catalysis. A, Chemical, vol. 158, no. 1, Art. no. 1, 2000, doi: 10.1016/S1381-1169(00)00107-2.
    5. Y. Traa, B. Burger, and J. Weitkamp, “Oscillation of the NOx concentration in its selective catalytic reduction on platinum-containing zeolite catalysts,” in Studies in surface science and catalysis, Granada, Spain, 2000, vol. B, no. 130, pp. 1457–1462.
    6. M. Seiler, A. Buchholz, and M. Hunger, “Conversion of methanol to hydrocarbons on acidic HZSM-5, HMOR, HSAPO-34, and HSAPO-18 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography,” presented at the 12. Deutsche Zeolith-Tagung, Munich, Germany, 2000.
    7. A. Küksal, E. Klemm, and G. Emig, “Single-stage liquid phase hydrogenation of maleic anhydride to gamma-butyro-lactone, 1,4-butanediol and tetrahydrofurane on Cu/ZnO/Al2O3-catalysts,” Granada, Spain, 2000, vol. 130, no. Supplement C, p. 2111.
    8. H. Kath, R. Gläser, and J. Weitkamp, “Beckmann-Umlagerung von Cyclohexanonoxim zu Epsilon-Caprolactam an Zeolithen mit MFI-Struktur,” Chemie - Ingenieur - Technik, vol. 72, no. 4, Art. no. 4, 2000, doi: 10.1002/1522-2640(200004)72:4<400::AID-CITE400>3.0.CO;2-E.
    9. H. G. Karge, J. G. Santiesteban, M. Stöcker, and J. Weitkamp, Eds., Microporous and mesoporous materials, vol. 35/36. 2000.
    10. M. Hunger, “Heterogeneously catalyzed reactions studied by in situ MAS NMR under continuous-flow conditions,” presented at the Pre-Symposium ZMPC2000, Akita, Japan, 2000.
    11. M. Hunger, U. Schenk, and A. Buchholz, “Mobility of cations and guest compounds in cesium-exchanged and impregnated zeolites Y and X investigated by high-temperature MAS NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 104, no. 51, Art. no. 51, 2000, doi: 10.1021/jp001571g.
    12. M. Hunger, U. Schenk, M. Seiler, and J. Weitkamp, “In situ MAS NMR spectroscopy of surface compounds formed from methanol and from a toluene/methanol mixture on basic zeolite X,” Journal of molecular catalysis. A, Chemical, vol. 156, no. 1, Art. no. 1, 2000, doi: 10.1016/S1381-1169(99)00404-5.
    13. M. Hunger, “In situ CF MAS NMR investigations of heterogeneously catalyzed reactions,” presented at the 5th Workshop on Magnetic Resonance in Materials Science, Stuttgart, Germany, 2000.
    14. T. Horvath, M. Seiler, and M. Hunger, “A comparative study of methyl-tert-butyl ether synthesis on zeolites HY, HBeta, HBeta/F and HZSM-5 by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography,” Applied catalysis. A, General, vol. 193, no. 1, Art. no. 1, 2000, doi: 10.1016/S0926-860X(99)00432-9.
    15. R. Dotzel, M. Reif, and E. Klemm, “Liquid phase isomerization of propadiene to methyl acetylene on modified alumina catalysts,” Granada, Spain, 2000, vol. 130, no. Supplement C, p. 2243.
    16. B. Burger, K. Haas-Santo, M. Hunger, and J. Weitkamp, “Synthesis and characterization of aluminium-rich zeolite ZSM-5,” Chemical engineering & technology, vol. 23, no. 4, Art. no. 4, 2000, doi: 10.1002/(SICI)1521-4125(200004)23:4<322::AID-CEAT322>3.0.CO;2-S.
    17. J. Ackermann, E. Klemm, and G. Emig, “Synthesis of ethylbenzene from 1,3-butadiene using basic zeolite catalysts,” Granada, Spain, 2000, vol. 130, no. Supplement C, pp. 863–868, doi: 10.1016/S0167-2991(00)81067-8.
  23. 1999

    1. S. Wellach, M. Hartmann, S. Ernst, and J. Weitkamp, “Steam reforming of methanol for the production of hydrogen on molecular sieve catalysts,” Baltimore, Maryland, U.S.A., 1999, vol. 2, pp. 1409–1416.
    2. J. Weitkamp, Ed., Catalysis and zeolites. Berlin: Springer, 1999.
    3. J. Weitkamp, S. Ernst, and L. Puppe, “Shape-selective catalysis in zeolites,” in Catalysis and zeolites, J. Weitkamp, Ed. Berlin: Springer, 1999, pp. 327–376.
    4. J. Weitkamp, M. Breuninger, H. G. Karge, and M. Hunger, “Peculiarities of Bronsted acid sites in FER-type zeolites,” Baltimore, Maryland, U.S.A., 1999, vol. 4, pp. 2697–2704.
    5. J. Weitkamp and Y. Traa, “Isobutane/butene alkylation on solid catalysts. Where do we stand?,” Catalysis today, vol. 49, no. 1, Art. no. 1, 1999, doi: 10.1016/S0920-5861(98)00424-6.
    6. Y. Traa, B. Burger, and J. Weitkamp, “Zeolite-based materials for the selective catalytic reduction of NOx with hydrocarbons,” Microporous and mesoporous materials, vol. 30, no. 1, Art. no. 1, 1999, doi: 10.1016/S1387-1811(99)00030-X.
    7. Y. Traa and J. Weitkamp, “Kinetics of the methanation of carbon dioxide over ruthenium on titania,” Chemical engineering & technology, vol. 22, no. 4, Art. no. 4, 1999, doi: 10.1002/(SICI)1521-4125(199904)22:4<291::AID-CEAT291>3.0.CO;2-L.
    8. Y. Traa, B. Burger, and J. Weitkamp, “Abatement of N2O in the selective catalytic reduction of NOx on platinum zeolite catalysts upon promotion with vanadium,” vol. 1999, pp. 2187–2188, 1999.
    9. M. Seitz, E. Klemm, and G. Emig, “Silanation as a means to reduce deactivation,” in Catalyst deactivation 1999, Brugge, Belgium, 1999, no. 126.
    10. M. Seitz, E. Klemm, and G. Emig, “Controlling acidity and shape selectivity of acid zeolites by silanation,” in Materials Research Society conference proceedings, Baltimore, Maryland, U.S.A., 1999.
    11. M. Seiler, U. Schenk, and M. Hunger, “Conversion of methanol to hydrocarbons on zeolite HZSM-5 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography,” vol. 62, no. 2–4, Art. no. 2–4, 1999.
    12. U. Schenk, M. Hunger, and J. Weitkamp, “Characterization of basic guest compounds on solid catalysts by 13C CP/MAS NMR spectroscopy of surface methoxy groups,” Magnetic resonance in chemistry, MRC, vol. 37, no. 13, Art. no. 13, 1999, doi: 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-A.
    13. U. Schemmert, J. Käer, and J. Weitkamp, “Interference microscopy as a technique for directly measuring intracrystalline transport diffusion in zeolites,” Microporous and mesoporous materials, vol. 32, no. 1, Art. no. 1, 1999, doi: 10.1016/S1387-1811(99)00095-5.
    14. U. Schemmert, J. Kärger, C. Krause, R. A. Rákoczy, and J. Weitkamp, “Monitoring the evolution of intracrystalline concentration,” epl, Europhysical letters, vol. 46, no. 2, Art. no. 2, 1999, doi: 10.1209/epl/i1999-00245-y.
    15. U. Rymsa, M. Hunger, H. Knözinger, and J. Weitkamp, “Spectroscopic and catalytic characterization of basic zeolites and related porous materials,” in Porous materials in environmentally friendly processes, Eger, Hungary, 1999, no. 125, pp. 197–204.
    16. R. A. Rakoczy, S. Ernst, M. Hartmann, Y. Traa, and J. Weitkamp, “Synthesis of large molecular sieve crystals with the AFI (AlPO4-5) topology,” Catalysis today, vol. 49, no. 1, Art. no. 1, 1999, doi: 10.1016/S0920-5861(98)00432-5.
    17. A. Raichle, R. A. Rakoczy, Y. Traa, and J. Weitkamp, “Reactions of methylcyclohexane on bifunctional zeolite catalysts,” in Porous materials in environmentally friendly processes, Eger, Hungary, 1999, no. 125, pp. 433–440.
    18. S. Kowalak et al., “Cation exchanged zeolites ZSM-5 for the hydroxylation of benzene with nitrous oxide,” in Materials Research Society conference proceedings, Baltimore, Maryland, U.S.A., 1999.
    19. E. Klemm, B. Amon, H. Redlingshöfer, and G. Emig, “Kinetics of catalyst coking in the hydrogenation of nitrobenzene to aniline,” in Catalyst deactivation 1999, Brugge, Belgium, 1999, no. 126.
    20. E. Klemm, A. Reitzmann, G. Emig, S. A. Buchholz, and H. W. Zanthoff, “Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways,” vol. 115, p. 604, 1999.
    21. E. Klemm and G. Emig, “Determination of adsorption constants and diffusion coefficients of aromatics in zeolites by transient experiments in a recycle reactor,” in Materials Research Society conference proceedings, Baltimore, Maryland, U.S.A., 1999.
    22. H. G. Karge, M. Hunger, and H. Beyer, “Characterization of zeolites,” in Catalysis and zeolites, J. Weitkamp, Ed. Berlin: Springer, 1999, pp. 198–326.
    23. H. G. Karge and J. Weitkamp, Eds., Structures and structure determination, vol. 2. Berlin: Springer, 1999.
    24. M. Hunger, U. Schenk, B. Burger, and J. Weitkamp, “Influence of guest compounds on the base strength of zeolites Y and X investigated by NMR spectroscopy,” Baltimore, Maryland, U.S.A., 1999, vol. 4, pp. 2503–2510.
    25. M. Hunger, U. Schenk, M. Breuninger, R. Gläser, and J. Weitkamp, “Characterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques,” Microporous and mesoporous materials, vol. 27, no. 2, Art. no. 2, 1999, doi: 10.1016/S1387-1811(98)00260-1.
    26. M. Hunger, “Moderne Anwendungen der In-situ-NMR-Spektroskopie in der heterogenen Katalyse.” Institute of Chemical Technology, Ruhr University Bochum, Germany, 1999.
    27. M. Hunger, M. Seiler, and T. Horvath, “A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions,” Catalysis letters, vol. 57, no. 4, Art. no. 4, 1999, doi: 10.1023/A:1019064003201.
    28. R. Gläser and J. Weitkamp, “Zeolite-catalyzed isopropylation of naphthalene at supercritical reaction conditions,” Baltimore, Maryland, U.S.A., 1999, vol. 2, pp. 1447–1454.
    29. R. Gläser and J. Weitkamp, “Alkylation of naphthalene on a zeolite catalyst in supercritical and gaseous rection phases,” in Proceedings of the DGMK Conference “The Future Role of Aromatics in Refining and Petrochemistry,” Erlangen, Germany, 1999, no. 99,3, pp. 271–278.
    30. G. Ertl and J. Weitkamp, Eds., Preparation of solid catalysts. Weinheim: Wiley-VCH, 1999.
    31. G. Ertl and J. Weitkamp, Eds., Environmental catalysis. Weinheim: Wiley-VCH, 1999.
    32. G. Emig, M. Rupp, and J. Weitkamp, Eds., Proceedings of the DGMK Conference “The Future Role of Aromatics in Refining and Petrochemistry,” no. 99,3. Dt. Wiss. Ges. für Erdöl, Erdgas und Kohle, 1999.
    33. H. Du, R. Klemt, F. Schell, J. Weitkamp, and E. Roduner, “ESR study of Na-Y-supported Pd and Pt ions and clusters,” Baltimore, Maryland, U.S.A., 1999, vol. 4, pp. 2665–2672.
    34. B. Burger, K. Haas-Santo, M. Hunger, and J. Weitkamp, “Synthese und Charakterisierung von aluminiumreichen ZSM-5-Zeolithen,” Chemie - Ingenieur - Technik, vol. 71, no. 7, Art. no. 7, 1999, doi: 10.1002/cite.330710718.
    35. E. Bosch, S. Huber, J. Weitkamp, and H. Knözinger, “Adsorption of trichloro- and trifluoromethane in Y-zeolites as studied by IR spectroscopy and multinuclear solid-state NMR,” Physical chemistry, chemical physics, vol. 1, no. 4, Art. no. 4, 1999, doi: 10.1039/A808296K.
    36. B. Amon, H. Redlingshöfer, E. Klemm, E. Dieterich, and G. Emig, “Kinetic investigations of the deactivation by coking of a noble metal catalyst in the catalytic hydrogenation of nitrobenzene using a catalytic wall reactor,” Chemical engineering and processing, vol. 38, no. 4, Art. no. 4, 1999, doi: 10.1016/S0255-2701(99)00037-9.
    37. B. Amon, E. Klemm, and G. Emig, “The use of a catalytic wall reactor for studying highly exothermic reactions,” Reaction kinetics and the development of catalytic processes, no. 122, C, Art. no. 122, C, 1999, doi: 10.1016/S0167-2991(99)80154-2.
    38. J. Ackermann, E. Klemm, and G. Emig, “Aromatization of 1,3-butadiene on basic zeolites in the vapor phase,” in Materials Research Society conference proceedings, Baltimore, Maryland, U.S.A., 1999.
  24. 1998

    1. Y. Traa and J. Weitkamp, “Kinetik der Methanisierung von Kohlendioxid an Ruthenium auf Titandioxid,” Chemie - Ingenieur - Technik, vol. 70, no. 11, Art. no. 11, 1998, doi: 10.1002/cite.330701115.
    2. J. Stelzer, M. Paulus, M. Hunger, and J. Weitkamp, “Hydrophobic properties of all-silica zeolite beta,” Microporous and mesoporous materials, vol. 22, no. 1, Art. no. 1, 1998, doi: 10.1016/S1387-1811(98)00071-7.
    3. A. Reitzmann, H. Friedrich, E. Klemm, M. Häfele, and G. Emig, “Reaction engineering investigations of hydroxylation of benzene on ZSM-5 type zeolites,” in Proceedings, 3rd Polish-German Zeolite Colloquium, Torun, Poland, 1998.
    4. E. Klemm, M. Seitz, H. Scheidat, and G. Emig, “Controlling acidity and selectivity of HY-type zeolites by silanation,” Journal of catalysis, vol. 173, no. 1, Art. no. 1, 1998, doi: 10.1006/jcat.1997.1915.
    5. E. Klemm, J. G. Wang, and G. Emig, “Comparison of the sorption of benzene and phenol in silicalite, H-Al-ZSM-5, and Na-AlZSM-5 by computer simulation,” vol. 26, p. 11, 1998.
    6. E. Klemm and G. Emig, “Transient experiments in a recycle reactor for the determination of diffusion coefficients in shape selective catalysis,” in Proceedings, 3rd Polish-German Zeolite Colloquium, Torun, Poland, 1998.
    7. E. Klemm, A. Reitzmann, S. Buchholz, and H. Zanthoff, “Zur Rolle von Oberflächensauerstoff- Spezies in der heterogen-katalysierten Hydroxylierung von Benzol zu Phenol mit N2O,” Chemie - Ingenieur - Technik, vol. 70, no. 8, Art. no. 8, 1998, doi: 10.1002/cite.330700819.
    8. M. Hunger, T. Horvath, and J. Weitkamp, “Methyl tertiary-butyl ether synthesis on zeolite HBeta investigated by in situ MAS NMR spectroscopy under continuous-flow conditions,” Microporous and mesoporous materials, vol. 22, no. 1, Art. no. 1, 1998, doi: 10.1016/S1387-1811(98)00078-X.
    9. M. Hunger, “Untersuchung heterogener Reaktionssysteme mittels In-situ-MAS-NMR-Spektroskopie.” Institute of Chemical Technology at the University of Dresden, Germany, 1998.
    10. M. Hunger, “In-situ-NMR-Spektroskopie an heterogenen Reaktionssystemen.” Institute of Chemical Engineering at the University Karlsruhe (TH), Germany, 1998.
    11. M. Hunger, U. Schenk, and J. Weitkamp, “Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy,” Journal of molecular catalysis. A, Chemical, vol. 134, no. 1, Art. no. 1, 1998, doi: 10.1016/S1381-1169(98)00026-0.
    12. M. Hunger, “Modern applications of in situ MAS NMR spectroscopy in heterogeneous catalysis.” Laboratoire de Materiaux Mineraux, Ecole Nationale Superieure de Chemie de Mulhouse, France, 1998.
    13. M. Hunger, “Heterogeneously catalyzed reactions studied by in situ MAS NMR spectroscopy.” Institut de Recherches sur la Catalyse - C.N.R.S., Villeurbanne, France, 1998.
    14. R. Gläser, R. Li, M. Hunger, S. Ernst, and J. Weitkamp, “Zeolite HNU-87,” Catalysis letters, vol. 50, no. 3, Art. no. 3, 1998, doi: 10.1023/A:1019039723906.
  25. 1997

    1. H. W. Zanthoff, M. Lahmer, M. Baerns, E. Klemm, M. Seitz, and G. Emig, “Enhanced product selectivity in partial oxidation of propane on multicomponent oxide catalysts by masking of total oxidation sites,” Journal of catalysis, vol. 172, no. 1, Art. no. 1, 1997, doi: https://doi.org/10.1006/jcat.1997.1850.
    2. U. Weiß, M. Weihe, M. Hunger, H. G. Karge, and J. Weitkamp, “The induction period in ethylbenzene disproportionation over large-pore zeolites,” in Studies in surface science and catalysis, Seoul, Korea, 1997, vol. B, no. 105, pp. 973–980.
    3. J. Weitkamp, S. Ernst, E. Roland, and G. F. Thiele, “The modified hydrophobicity index as a novel method for characterizing the surface properties of titanium silicalites,” in Studies in surface science and catalysis, Seoul, Korea, 1997, vol. A, no. 105, pp. 763–770.
    4. J. Weitkamp and Y. Traa, “Alkylation of isobutane with alkenes on solid catalysts,” vol. 4, G. Ertl, Ed. Weinheim: VCH, 1997, pp. 2039–2069.
    5. J. Weitkamp, H. Knözinger, J. Kärger, and S. Ernst, “Herstellung, physikalisch-chemische Charakterisierung und katalytische Testung von basischen Zeolith-Katalysatoren,” in Bericht über Statusseminar Katalyse, Forschungszentrum Jülich, 1997, pp. 251–268.
    6. J. Weitkamp, S. Ernst, F. Cubero, F. Wester, and W. Schnick, “Nitrido-sodalite Zn6P12N24 as a material for reversible hydrogen encapsulation,” Advanced materials, vol. 9, no. 3, Art. no. 3, 1997, doi: 10.1002/adma.19970090314.
    7. J. Weitkamp, “Ancillary techniques in laboratory units for catalyst testing,” vol. 3, G. Ertl, Ed. Weinheim: VCH, 1997, pp. 1376–1387.
    8. Y. Traa, M. Breuninger, B. Burger, and J. Weitkamp, “Oscillation of NOx concentration in the selective catalytic reduction of nitrogen oxides on platinum-containing zeolite catalysts,” Angewandte Chemie. International edition, vol. 36, no. 19, Art. no. 19, 1997, doi: 10.1002/anie.199721131.
    9. Y. Traa, M. Breuninger, B. Burger, and J. Weitkamp, “Oszillation der NOx-Konzentration bei der selektiven katalytischen Reduktion von Stickoxiden an platinhaltigen Zeolith-Katalysatoren,” vol. 109, pp. 2207–2208, 1997.
    10. M. Sigl, S. Ernst, J. Weitkamp, and H. Knözinger, “Characterization of the acid properties of Al-, Ga- and Fe-HZSM-5 by low-temperature FTIR spectroscopy of adsorbed dihydrogen and ethylbenzene disproportionation,” Catalysis letters, vol. 45, no. 1, Art. no. 1, 1997, doi: 10.1023/A:1019086722262.
    11. H. B. Schwarz et al., “In situ 13C FT PFG NMR study of intracrystalline diffusion during isopropanol conversion in X-type zeolites,” vol. 167, pp. 248–255, 1997.
    12. K. Nowinska et al., “Direct catalytic oxidation of benzene to phenol,” presented at the Third European Congress of Catalysis, Kraków, Poland, 1997.
    13. E. Klemm, H. Scheidat, and G. Emig, “A study of shape selectivity on zeolites in ethylbenzene disproportionation,” Chemical engineering science, vol. 52, no. 16, Art. no. 16, 1997, doi: 10.1016/S0009-2509(97)00095-X.
    14. E. Klemm and G. Emig, “Simulation of the isomerization of an ortho-diethylbenzene on zeolites using a continuum approach and different diffusion models,” Microporous materials, vol. 12, no. 4, Art. no. 4, 1997, doi: 10.1016/S0927-6513(97)00077-1.
    15. E. Klemm, J. Wang, and G. Emig, “A study of shape selectivity in ethylation/disproportionation of ethylbenzene on ZSM-5 zeolites using a continuum and a Monte Carlo method,” Chemical engineering science, vol. 52, no. 18, Art. no. 18, 1997, doi: 10.1016/S0009-2509(97)00119-X.
    16. E. Klemm and G. Emig, “A method for the determination of diffusion coefficients in product-shape-selective catalysis on zeolites under reaction conditions,” Chemical engineering science, vol. 52, no. 23, Art. no. 23, 1997, doi: 10.1016/S0009-2509(97)00175-9.
    17. W. Keim, B. Lücke, and J. Weitkamp, “C4 chemistry - manufacture and use of C4 hydrocarbons,” in Tagungsbericht / Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle, Essen, Germany, 1997, vol. 1, no. 97,2, p. 328.
    18. M. Häfele, A. Reitzmann, E. Klemm, and G. Emig, “Hydroxylation of benzene on ZSM5 type catalysts,” in 3rd World Congress on Oxidation Catalaysis, San Diego, CA, U.S.A., 1997, no. 110, Supplement C, pp. 847–856, doi: 10.1016/S0167-2991(97)81047-6.
    19. M. Hunger, T. Horvath, and J. Weitkamp, “Conversion of propan-2-ol on zeolite La,Na-Y investigated by in situ MAS NMR spectroscopy under continuous-flow conditions,” in Studies in surface science and catalysis, Seoul, Korea, 1997, vol. B, no. 105, pp. 853–860.
    20. M. Hunger, P. Sarv, and A. Samoson, “Two-dimensional triple-quantum 23Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites,” Solid state nuclear magnetic resonance, vol. 9, no. 2, Art. no. 2, 1997, doi: 10.1016/S0926-2040(97)00051-9.
    21. M. Hunger, U. Schenk, B. Burger, and J. Weitkamp, “Synergism between the guest compound and the host framework in zeolite Cs,Na-Y after impregnation with cesium hydroxide,” vol. 36, no. 22, Art. no. 22, 1997, doi: 10.1002/anie.199725041.
    22. M. Hunger and T. Horvath, “Sorption of methanol on zeolite HBeta investigated by in situ MAS NMR spectroscopy,” Catalysis letters, vol. 49, no. 1, Art. no. 1, 1997, doi: 10.1023/A:1019028532141.
    23. M. Hunger, U. Schenk, B. Burger, and J. Weitkamp, “Synergismus zwischen Gastkomponente und Wirtgerüst im Zeolith CsNaY nach Imprägnierung mit Caesiumhydroxid,” Angewandte Chemie, vol. 109, no. 22, Art. no. 22, 1997, doi: 10.1002/ange.19971092232.
    24. M. Hunger, “Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy,” Catalysis reviews, vol. 39, no. 4, Art. no. 4, 1997, doi: 10.1080/01614949708007100.
    25. M. Hunger, “In-situ-NMR-Untersuchungen heterogen katalysierter Reaktionen unter Stroemungsbedingungen,” presented at the Meeting of the DECHEMA-subgroup “Zeolites,” Frankfurt am Main, Germany, 1997.
    26. M. Hunger, “Moderne Anwendungen der In-situ-NMR-Spektroskopie in der heterogenen Katalyse,” presented at the 477th DECHEMA-Colloquium, Frankfurt am Main, Germany, 1997.
    27. M. Hunger, T. Horvath, and J. Weitkamp, “MTBE synthesis on zeolites investigated by in situ NMR spectroscopy,” in Proceedings of the DGMK-Conference “C4 Chemistry - Manufacture and Use of C4 Hydrocarbons”, October 6-8, 1997, Aachen, Germany, Aachen, Germany, 1997, no. 9705, pp. 65–72.
    28. M. Hunger and T. Horvath, “Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR Spectroscopy under continuous-flow conditions,” Journal of catalysis, vol. 167, no. 1, Art. no. 1, 1997, doi: 10.1006/jcat.1997.1562.
    29. R. Gläser, R. Roesky, T. Boger, G. Eigenberger, S. Ernst, and J. Weitkamp, “Probing the hydrophobic properties of MCM-41-type materials by the hydrophobicity index,” in Studies in surface science and catalysis, Seoul, Korea, 1997, vol. A, no. 105, pp. 695–702.
    30. G. Ertl, H. Knözinger, and J. Weitkamp, Eds., “Handbook of heterogeneous catalysis.” VCH, Weinheim, 1997.
    31. S. Ernst, M. Hunger, and J. Weitkamp, “Hydrothermalsynthese und physikalisch-chemische Charakterisierung von Zeolith MCM-58,” Chemie - Ingenieur - Technik, vol. 69, no. 1–2, Art. no. 1–2, 1997, doi: 10.1002/cite.330690109.
    32. T. Boger, M. Fritz, R. Ascher, S. Ernst, J. Weitkamp, and G. Eigenberger, “Selektive Trennung von p- und m-Xylol an zeolithischen Adsorbentien in der Gasphase,” Chemie - Ingenieur - Technik, vol. 69, no. 4, Art. no. 4, 1997, doi: 10.1002/cite.330690409.
    33. T. Boger, R. Roesky, R. Gläser, S. Ernst, G. Eigenberger, and J. Weitkamp, “Influence of the aluminum content on the adsorptive properties of MCM-41,” Microporous materials, vol. 8, no. 1, Art. no. 1, 1997, doi: 10.1016/S0927-6513(96)00061-2.
  26. 1996

    1. J. Weitkamp and S. Ernst, “Characterization of the surface properties of porous adsorbents and catalysts by the hydrophobicity index,” vol. 96, pp. 82–85, 1996.
    2. J. Weitkamp et al., “Solid-state ion exchange of alkali metal cations into zeolite Y,” in Studies in surface science and catalysis, Baltimore, MD, USA, 1996, vol. B, no. 101, pp. 731–740.
    3. J. Weitkamp, Ed., Proceedings of the DGMK Conference Catalysis on Solid Acids and Bases, no. 96,1. DGMK, 1996.
    4. R. Q. Snurr et al., “In SituPFG NMR study of intracrystalline diffusion during ethene conversion in ZSM-5,” Journal of catalysis, vol. 163, no. 1, Art. no. 1, 1996, doi: 10.1006/jcat.1996.0312.
    5. J. Kärger et al., “Catalytic reactions in zeolites studied by in situ PFG NMR and MAS NMR techniques,” in Proceedings of the DGMK Conference Catalysis on Solid Acids and Bases, Berlin, Germany, 1996, no. 96,1, pp. 87–94.
    6. M. Hunger and T. Horvath, “Adsorption of methanol on Bronsted acid sites in zeolite H-ZSM-5 investigated by multinuclear solid-state NMR spectroscopy,” Journal of the American Chemical Society, vol. 118, no. 49, Art. no. 49, 1996, doi: 10.1021/ja962425k.
    7. M. Hunger, “Conversion of propan-2-ol on zeolite Y investigated by in situ MAS NMR spectroscopy under continuous-flow conditions,” presented at the 19th Annual Meeting of the British Zeolite Association, Edinburgh, U.K., 1996.
    8. M. Hunger, “Ex situ and in situ solid-state NMR investigations of Bronsted sites in zeolites,” presented at the plenary lecture, 8th German Zeolite Meeting, Berlin, Germany, 1996.
    9. M. Hunger, “Moderne physikochemische Methoden zur Aufklaerung nanoporöser Materialien.” Faculty of Chemistry, University of Bayreuth, Germany, 1996.
    10. M. Hunger, S. Ernst, S. Steuernagel, and J. Weitkamp, “High-field H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22,” Microporous materials, vol. 6, no. 5, Art. no. 5, 1996, doi: https://doi.org/10.1016/0927-6513(96)00043-0.
    11. M. Hunger, “Solid-state NMR investigations of zeolites.” Leverhulme Centre for Innovative Catalysis, The University of Liverpool, U.K., 1996.
    12. M. Hunger, “Anwendung der Festkoerper-NMR-Spektroskopie zur Charakterisierung von Zeolithen,” presented at the 1st Workshop on Magnetic Resonance in Materials Science, Stuttgart, Germany, 1996.
    13. M. Hunger, “Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites,” Solid state nuclear magnetic resonance, vol. 6, no. 1, Art. no. 1, 1996, doi: 10.1016/0926-2040(95)01201-X.
    14. M. Feuerstein, M. Hunger, G. Engelhardt, and J. P. Amoureux, “Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy,” Solid state nuclear magnetic resonance, vol. 7, no. 2, Art. no. 2, 1996, doi: 10.1016/S0926-2040(96)01246-5.
    15. N.-K. Bär, S. Ernst, J. Kärger, H. B. Schwarz, and J. Weitkamp, “Influence of intracrystalline confinement on pulsed field gradient NMR diffusion studies with zeolite crystallites of finite size,” Microporous materials, vol. 6, no. 5, Art. no. 5, 1996, doi: 10.1016/0927-6513(96)00029-6.
  27. 1995

    1. J. Weitkamp, S. Ernst, T. Bock, A. Kiss, and P. Kleinschmit, “Introduction of noble metals into small-pore zeolites via solid-state ion exchange,” in Catalysis by microporous materials, Szombathely, Hungary, 1995, no. 94, pp. 278–285.
    2. J. Weitkamp, U. Weiß, and S. Ernst, “New aspects and trends in zeolite catalysis,” in Catalysis by microporous materials, Szombathely, Hungary, 1995, no. 94, pp. 363–380.
    3. J. Weitkamp, M. Fritz, and S. Ernst, “Zeolites as media for hydrogen storage,” International journal of hydrogen energy, vol. 20, no. 12, Art. no. 12, 1995, doi: 10.1016/0360-3199(95)00058-L.
    4. J. Kärger, W. Keller, H. Pfeifer, S. Ernst, and J. Weitkamp, “Unexpectedly low translational mobility of methane and tetrafluoromethane in the large-pore molecular sieve VPI-5,” Microporous materials, vol. 3, no. 4, Art. no. 4, 1995, doi: 10.1016/0927-6513(94)00049-2.
    5. H. Koller, B. Burger, A. M. Schneider, G. Engelhardt, and J. Weitkamp, “Location of Na+ and Cs+ cations in CsNaY zeolites studied by 23Na and 133Cs magic-angle spinning nuclear magnetic resonance spectroscopy combined with X-ray structure analysis by Rietveld refinement,” Microporous materials, vol. 5, no. 4, Art. no. 4, 1995, doi: 10.1016/0927-6513(95)00061-5.
    6. E. Klemm, H. Seiler, and G. Emig, “A computer simulation of shape selective catalysis on zeolites,” in Zeolite science 1994, Garmisch-Partenkirchen, Germany, 1995, no. 98, p. 246.
    7. H. Klein, H. Fuess, and M. Hunger, “Cation location and migration in lanthanum-exchanged zeolite NaY studied by X-ray powder diffraction and MAS NMR spectroscopy,” Journal of the Chemical Society. Farady transcations, vol. 91, no. 12, Art. no. 12, 1995, doi: 10.1039/FT9959101813.
    8. H. G. Karge and J. Weitkamp, Eds., Zeolite science 1994, no. 98. Elsevier, 1995, pp. XXXV, 492.
    9. M. Hunger, T. Horvath, G. Engelhardt, and H. G. Karge, “Multi-nuclear NMR study of the interaction of SiOHAl groups with cationic and neutral guest-molecules in dehydrated zeolites Y and ZSM-5,” in Catalysis by microporous materials, Szombathely, Hungary, 1995, vol. 94, pp. 756–763, doi: 10.1016/S0167-2991(06)81293-0.
    10. M. Hunger and T. Horvath, “Multi-nuclear solid-state NMR study of the local structure of SiOHAl groups and their interaction with probe-molecules in dehydrated faujasite, mordenite and zeolite ZSM-5,” Berichte der Bunsen-Gesellschaft für Physikalische Chemie, vol. 99, no. 11, Art. no. 11, 1995, doi: 10.1002/bbpc.199500077.
    11. M. Hunger and T. Horvath, “A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions,” Journal of the Chemical Society. Chemical communications, J. Chem. Soc., Chem. Commun., no. 14, Art. no. 14, 1995, doi: 10.1039/C39950001423.
    12. M. Hunger, “Techniken und Anwendungen der Festkoerper-NMR-Spektroskopie zur Charakterisierung von Bronsted-Zentren in Zeolithen,” presented at the Seminar on NMR Spectroscopy and NMR-Imaging, University of Tuebingen, Germany, 1995.
    13. M. Hunger, G. Engelhardt, and J. Weitkamp, “Solid-state 23Na, 139La, 27Al and 29Si nuclear magnetic resonance spectroscopic investigations of cation location and migration in zeolites LaNaY,” Microporous materials, vol. 3, no. 4, Art. no. 4, 1995, doi: 10.1016/0927-6513(94)00061-Y.
    14. M. Hunger, S. Ernst, and J. Weitkamp, “Multinuclear solid-state n.m.r. investigation of zeolite MCM-22,” Zeolites, vol. 15, no. 3, Art. no. 3, 1995, doi: 10.1016/0144-2449(94)00038-T.
    15. M. Hunger, “Multikern-Festkoerper-NMR-Untersuchungen zur Wechselwirkung von Gastmolekuelen mit SiOHAl-Gruppen im dehydralisierten Faujasit, Mordenit und ZSM-5-Zeolith,” presented at the 94. Hauptversammlung der Deutschen Bunsengesellschaft für Physikalische Chemie e.V., Bremen, Germany, 1995.
    16. M. Hunger, “In situ MAS NMR investigations of alcohol conversion on zeolites under continuous-flow conditions,” presented at the 17th Workshop on Magnetic Resonance and the Structure of Matter, Gosen, Germany, 1995.
    17. U. Gräser, W. Keim, W. J. Petzny, and J. Weitkamp, “Perspektiven der Petrochemie,” vol. 111, pp. 208–218, 1995.
    18. H. Ernst et al., “NMR evidence on the role of diffusion in zeolite catalysis,” in Catalysis by microporous materials, Szombathely, Hungary, 1995, no. 94, pp. 748–755.
    19. H. B. chwarz et al., “NMR study of intrinsic diffusion and reaction in CsNaX type zeolites,” Applied catalysis. A, General, vol. 130, no. 2, Art. no. 2, 1995, doi: 10.1016/0926-860X(95)00113-1.
  28. 1994

    1. J. Weitkamp, D. Schmid, M. Fritz, F. Cubero, and S. Ernst, “Wasserstoff-Speicherung in Zeolithen,” in Wasserstoff als Energieträger, Düsseldorf, 1994, pp. 287–301.
    2. J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hölderich, Eds., Zeolites and related microporous materials, no. 84. Elsevier, 1994.
    3. J. Weitkamp and S. Ernst, “Large pore molecular sieves: Chapter 5 Catalytic test reactions for probing the pore width of large and super-large pore molecular sieves,” Catalysis today, vol. 19, no. 1, Art. no. 1, 1994, doi: 10.1016/0920-5861(94)85005-4.
    4. S. Unverricht, M. Hunger, S. Ernst, H. G. Karge, and J. Weitkamp, “Zeolite MCM-22 - synthesis, dealumination and structural characterization,” in Zeolites and related microporous materials, Garmisch-Partenkirchen, Germany, 1994, no. 84, pp. 37–44.
    5. S. Unverricht, S. Ernst, and J. Weitkamp, “Isobutane/1-butene alkylation on zeolites beta and MCM-22,” in Zeolites and related microporous materials, Garmisch-Partenkirchen, Germany, 1994, no. 84, pp. 1693–1700.
    6. T. Riemer, D. Spielbauer, M. Hunger, G. A. H. Mekhemer, and H. Knözinger, “Superacid properties of sulfated zirconia as measured by Raman spectroscopy and 1H MAS NMR,” vol. 1994, pp. 1181–1182, 1994.
    7. I. Mirsojew, S. Ernst, J. Weitkamp, and H. Knözinger, “Characterization of acid properties of Al- and Ga-HZSM-5 zeolites by low temperature Fourier transform infrared spectroscopy of adsorbed carbon monoxide,” Catalysis letters, vol. 24, no. 3, Art. no. 3, 1994, doi: 10.1007/BF00811796.
    8. M. A. Makarova, A. F. Ojo, K. Karim, M. Hunger, and J. Dwyer, “FTIR study of weak hydrogen bonding of Broensted hydroxyls in zeolites and aluminophosphates,” The Journal of Physical Chemistry, vol. 98, no. 14, Art. no. 14, 1994, doi: 10.1021/j100065a013.
    9. H. Klein, H. Fuessa, S. Ernst, and J. Weitkamp, “Localization of naphthalenes in zeolite HZSM-5 by X-ray powder diffraction and molecular mechanics calculation,” Microporous materials, vol. 3, no. 3, Art. no. 3, 1994, doi: 10.1016/0927-6513(94)00037-9.
    10. H. G. Karge, S. Ernst, U. Weihe, U. Weiß, and J. Weitkamp, “Ethylbenzene disproportionation over large-pore zeolites,” in Zeolites and related microporous materials, Garmisch-Partenkirchen, Germany, 1994, no. 84, pp. 1805–1812.
    11. K. Jansen, M. Stöcker, H. G. Karge, and J. Weitkamp, Eds., Advanced zeolite science and applications, no. 85. Amsterdam: Elsevier, 1994.
    12. M. Hunger, G. Engelhardt, and J. Weitkamp, “Cation migration in zeolite LaNa-Y investigated by multinuclear solid-state NMR,” in Zeolites and related microporous materials, Garmisch-Partenkirchen, Germany, 1994, no. 84, pp. 725–732.
    13. W. Heink, J. Kärger, S. Ernst, and J. Weitkamp, “P.f.g. n.m.r. study of the influence of the exchangeable cations on the self-diffusion of hydrocarbons in zeolites,” Zeolites, vol. 14, no. 5, Art. no. 5, 1994, doi: 10.1016/0144-2449(94)90104-X.
    14. U. Gräser, W. Keim, W. J. Petzny, and J. Weitkamp, “Perspektiven der Petrochemie,” in Proceedings of the DGMK Conference, Leipzig, October 6-7, 1994, Leipzig, 1994, pp. 51–86.
    15. S. Ernst, Y. Traa, and U. Deeg, “Preparation, characterization and catalytic properties of cobalt phthalocyanine encapsulated in zeolite EMT,” in Studies in surface science and catalysis, Garmisch-Partenkirchen, Germany, 1994, vol. B, no. 84,B, pp. 925–932.
    16. S. Ernst and J. Weitkamp, “Chapter 3 - Synthesis of large pore alumosilicates,” Catalysis today, vol. 19, no. 1, Art. no. 1, 1994, doi: 10.1016/0920-5861(94)85003-8.
    17. G. Engelhardt, M. Hunger, H. Koller, and J. Weitkamp, “Exploring cation siting in zeolites by solid-state NMR of quadrupolar nuclei,” in Zeolites and related microporous materials, Garmisch-Partenkirchen, Germany, 1994, no. 84, pp. 421–428.
    18. G. Emig, E. Klemm, and H. Seiler, “Modellierung formselektiver Katalyse in Zeolithen,” Chemie - Ingenieur - Technik, vol. 66, no. 7, Art. no. 7, 1994, doi: 10.1002/cite.330660716.
  29. 1993

    1. J. Weitkamp, “Host/guest chemistry and catalysis in zeolites,” in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, Montreal, 1993, pp. 13–45.
    2. J. Weitkamp and R. Schumacher, “Synthesis, dealumination, and physico-chemical characterization of zeolite EMT,” in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, Montreal, 1993, pp. 353–360.
    3. J. Weitkamp and P. A. Jacobs, “Isobutane/1-butene alkylation on pentasil-type zeolite catalysts,” in Studies in surface science and catalysis, Budapest, 1993, vol. B, no. 75, pp. 1735–1738.
    4. J. Weitkamp, M. Fritz, and S. Ernst, “Zeolites as media for hydrogen storage,” in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, Montreal, 1993, pp. 11–19.
    5. J. Weitkamp, P. Kleinschmit, A. Kiss, and C. H. Berke, “The hydrophobicity index - a valuable test for probing the surface properties of zeolitic adsorbents or catalysts,” in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, Montreal, 1993, pp. 79–87.
    6. R. Schumacher, S. Ernst, and J. Weitkamp, “Separation of gaseous tetrachloroethene/water mixtures by adsorption on zeolites,” in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, Montreal, 1993, pp. 89–96.
    7. B. Marler et al., “The structure of zeolite ZSM-23 (MTT) refined from synchrotron X-ray powder data,” Journal of applied crystallography, vol. 26, no. 5, Art. no. 5, 1993, doi: 10.1107/S0021889893002006.
    8. M. Hunger, M. W. Anderson, A. Ojo, and H. Pfeifer, “Study of the geometry and location of the bridging OH groups in aluminosilicate and silicoaluminophosphate type zeolites using 1H MAS NMR sideband analysis and CP/MAS NMR,” Microporous materials, vol. 1, no. 1, Art. no. 1, 1993, doi: 10.1016/0927-6513(93)80005-F.
    9. S. Ernst, R. Kumar, and J. Weitkamp, “Hydrothermal transformation of zeolite ZSM-39 into ZSM-23,” in Proceedings from the Ninth International Zeolite Conference, Montreal, 1992, Montreal, 1993, pp. 287–295.
    10. M. Baerns and J. Weitkamp, Eds., Proceedings of the DGMK-Conference “Selective Hydrogenations and Dehydrogenations” on November 11-12, 1993 in Kassel/Germany, no. 9305. DGMK, 1993.
  30. 1992

    1. B. Zibrowius, E. Löffler, and M. Hunger, “Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves,” Zeolites, vol. 12, no. 2, Art. no. 2, 1992, doi: 10.1016/0144-2449(92)90079-5.
    2. J. Weitkamp, T. Kromminga, and S. Ernst, “Eduktselektive katalytische Hydrierung als Test für die Position von Edelmetallen auf Zeolithen,” Chemie - Ingenieur - Technik, vol. 64, no. 12, Art. no. 12, 1992, doi: 10.1002/cite.330641213.
    3. J. Weitkamp and S. Ernst, “Isobutane/olefin alkylation of solid catalysts,” in Processing and products, Buenos Aires, 1992, vol. 3, pp. 315–318.
    4. J. Weitkamp, M. Fritz, and S. Ernst, “Zeolithe als Speichermaterialien für Wasserstoff,” Chemie - Ingenieur - Technik, vol. 64, no. 12, Art. no. 12, 1992, doi: 10.1002/cite.330641211.
    5. J. Weitkamp, R. Schumacher, and U. Weiß, “Hydrothermalsynthese und Charakterisierung von Zeolith EMT,” Chemie - Ingenieur - Technik, vol. 64, no. 12, Art. no. 12, 1992, doi: 10.1002/cite.330641212.
    6. H. Stach et al., “Mordenite acidity,” The journal of physical chemistry, vol. 96, no. 21, Art. no. 21, 1992, doi: 10.1021/j100200a050.
    7. J. Kärger, H. Pfeifer, T. Wutscherk, S. Ernst, J. Weitkamp, and J. Fraissard, “Direct observation of intracrystalline transport diffusion in zeolites by xenon-129 NMR,” The journal of physical chemistry, vol. 96, no. 12, Art. no. 12, 1992, doi: 10.1021/j100191a059.
    8. J. Kärger, M. Petzold, H. Pfeifer, S. Ernst, and J. Weitkamp, “Single-file diffusion and reaction in zeolites,” Journal of catalysis, vol. 136, no. 2, Art. no. 2, 1992, doi: https://doi.org/10.1016/0021-9517(92)90062-M.
    9. M. Hunger, D. Freude, D. Fenzke, and H. Pfeifer, “1H solid-state NMR studies of the geometry of Bronsted acid sites in zeolites H-ZSM-5,” Chemical physics letters, vol. 191, no. 5, Art. no. 5, 1992, doi: 10.1016/0009-2614(92)85397-S.
    10. C. A. Fyfe, H. Grondey, Y. Feng, G. T. Kokotailo, S. Ernst, and J. Weitkamp, “Two-dimensional solid-state 29Si n.m.r. investigation of the three-dimensional bonding connectivities and structure of zeolite ZSM-23,” Zeolites, vol. 12, no. 1, Art. no. 1, 1992, doi: 10.1016/0144-2449(92)90009-E.
    11. M. Baerns and J. Weitkamp, Eds., Proceedings of the DGMK Conference “Selective Oxidations in Petrochemistry,” no. 92,4. DGMK, 1992.
  31. 1991

    1. B. Zibrowius, E. Löffler, G. Finger, E. Sonntag, M. Hunger, and J. Kornatowski, “Incorporation of silicon into the framework of SAPO-5 studied by NMR and IR spectroscopy,” vol. 65, pp. 537–548, 1991.
    2. J. Weitkamp, “New directions in zeolite catalysis,” in Catalysis and adsorption by zeolites, Leipzig, 1991, no. 65, pp. 21–46.
    3. J. Weitkamp and M. Neuber, “Shape-selective reactions of alkylnaphthalenes in zeolite catalysts,” in Chemistry of microporous crystals, Tokyo, 1991, no. 60, pp. 291–301.
    4. J. Weitkamp and S. Ernst, “Zeolites and their use in petroleum refining,” in Chemicals in the oil industry, P. H. Ogden, Ed. London: Royal Society of Chemistry, 1991, pp. 326–347.
    5. J. Weitkamp, M. Schwark, and S. Ernst, “Removal of thiophene impurities from benzene by selective adsorption in zeolite ZSM-5,” no. 16, Art. no. 16, 1991, doi: 10.1039/C39910001133.
    6. J. Weitkamp, K. Schäfer, and S. Ernst, “Selective adsorption of diastereomers in zeolites,” vol. 1991, pp. 1142–1143, 1991.
    7. J. Weitkamp, S. Ernst, B. Günzel, and W.-D. Deckwer, “Separation of gaseous water/ethanol mixtures by adsorption on hydrophobic zeolites,” Zeolites, vol. 11, no. 4, Art. no. 4, 1991, doi: 10.1016/0144-2449(91)80293-9.
    8. J. Weitkamp, S. Ernst, H.-J. Buysch, and D. Lindner, “Synthesis of piperazine and triethylenediamine using ZSM-5-type zeolite catalysts,” in Catalysis and adsorption by zeolites, Leipzig, 1991, no. 65, pp. 297–304.
    9. M. Stöcker, K. Reksten, S. Ernst, and J. Weitkamp, “Hochauflösende elektronenmikroskopische Untersuchungen an Zeolith ZSM-20,” Chemie - Ingenieur - Technik, vol. 63, no. 11, Art. no. 11, 1991, doi: 10.1002/cite.330631118.
    10. B. Staudte, M. Hunger, and M. Nimz, “1H MAS n.m.r. and n.i.r. studies of aluminum-exchanged ZSM-5 zeolites,” Zeolites, vol. 11, no. 8, Art. no. 8, 1991, doi: 10.1016/S0144-2449(05)80065-X.
    11. W. Reschetilowski, B. Meier, M. Hunger, B. Unger, and K.-P. Wendlandt, “Synthese und Charakterisierung P-haltiger ZSM-5-Zeolithe,” Angewandte Chemie, vol. 103, no. 6, Art. no. 6, 1991, doi: 10.1002/ange.19911030629.
    12. K. Reksten, M. Stöcker, S. Ernst, and J. Weitkamp, “High-resolution electron microscopy investigation of Zeolite ZSM-20,” Micron and microscopica acta, vol. 22, no. 1, Art. no. 1, 1991, doi: 10.1016/0739-6260(91)90144-O.
    13. R. Löw, S. Ernst, A. Kiss, P. Kleinschmit, and J. Weitkamp, “Synthese und Charakterisierung der superweitporigen Alumophosphat-Molekularsiebe VPI-5 und AIPO4-8,” Chemie - Ingenieur - Technik, vol. 63, no. 7, Art. no. 7, 1991, doi: 10.1002/cite.330630719.
    14. P. Kleinschmit and J. Weitkamp, “Zeolithe - die winzigen Riesen,” vol. 1991, pp. 52–55, 1991.
    15. A. Katzmarzyk, S. Ernst, J. Weitkamp, and H. Knözinger, “The reduction/oxidation behaviour of MnAPO-5 as studied by ESR spectroscopy,” Catalysis letters, vol. 9, no. 1, Art. no. 1, 1991, doi: 10.1007/BF00769085.
    16. H. G. Karge, V. Dondur, and J. Weitkamp, “Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites,” The Journal of Physical Chemistry, vol. 95, no. 1, Art. no. 1, 1991, doi: 10.1021/j100154a053.
    17. M. Hunger, D. Freude, and H. Pfeifer, “H-MAS-NMR-Untersuchungen zur Wechselwirkung von Bronsted-Zentren mit Sondenmolekülen,” in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie, Leipzig, 1991, no. 9101, pp. 147–154.
    18. M. Hunger, D. Freude, and H. Pfeifer, “Magic-angle spinning nuclear magnetic resonance studies of water molecules adsorbed on Bronsted-and Lewis-acid sites in zeolites and amorphous silica-aluminas,” Journal of the Chemical Society. Faraday transactions, vol. 87, no. 4, Art. no. 4, 1991, doi: 10.1039/FT9918700657.
    19. D. Fenzke, M. Hunger, and H. Pfeifer, “Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups,” Journal of magnetic resonance, vol. 95, no. 3, Art. no. 3, 1991, doi: 10.1016/0022-2364(91)90162-M.
    20. S. Ernst, M. Schwark, and J. Weitkamp, “Erhöhung der Octanzahl von Leichtbenzin durch Isomerisieren an bifunktionellen Zeolith-Katalysatoren,” in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie, Leipzig, 1991, no. 9101, pp. 181–190.
    21. S. Ernst and J. Weitkamp, “Oxidative coupling of methane,” in Proceedings of the Natural Gas Conversion Symposium, Oslo, 1991, no. 61, pp. 25–31.
    22. S. Ernst and J. Weitkamp, “Zeolite ZSM-57,” in Catalysis and adsorption by zeolites, Leipzig, 1991, no. 65, pp. 645–652.
    23. S. Ernst and J. Weitkamp, “Hydrothermalsynthese des Zeoliths ZSM-58 und templatfreie Synthese von Zeolith ZSM-5,” Chemie - Ingenieur - Technik, vol. 63, no. 7, Art. no. 7, 1991, doi: 10.1002/cite.330630720.
    24. H. Ernst, D. Freude, M. Hunger, and H. Pfeifer, “Multinuclear MAS NMR studies on coked zeolites H-ZSM-5,” vol. 65, pp. 397–404, 1991.
    25. E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, and H. Pfeifer, “Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5,” Journal of catalysis, vol. 127, no. 1, Art. no. 1, 1991, doi: 10.1016/0021-9517(91)90206-J.
    26. E. Brunner, D. Freude, M. Hunger, H. Pfeifer, and B. Staudte, “Magic-angle-spinning nuclear magnetic resonance and infrared studies on modified zeolites,” in Zeolite chemistry and catalysis, Prague, Czechoslovakia, 1991, no. 69, pp. 453–459, doi: 10.1016/S0167-2991(08)61600-6.
    27. C. H. Berke, A. Kiss, P. Kleinschmit, and J. Weitkamp, “Der Hydrophobizitäts-Index,” Chemie - Ingenieur - Technik, vol. 63, no. 6, Art. no. 6, 1991, doi: 10.1002/cite.330630618.
  32. 1990

    1. J. Weitkamp and S. Ernst, “Factors influencing the selectivity of hydrocracking in zeolites,” in Guidelines for mastering the properties of molecular sieves, Chantilly, France, 1990, no. 221, pp. 343–354.
    2. J. Weitkamp, D. Lindner, and S. Ernst, “Hydrothermalsynthese und Charakterisierung von Zeolith-Katalysatoren für organische Synthesen,” in Veröffentlichung der Vorträge anlässlich des BMFT-Statusseminars “Katalyseforschung”, Berlin, March 1, 1990, Projektträgerschaft Material- und Rohstofforschung, Berlin, 1990, pp. 49–60.
    3. J. Weitkamp and S. Ernst, “Möglichkeiten und Grenzen des formselektiven Hydrocrackens an Zeolith-Katalysatoren,” in Vorträge der DGMK-Haupttagung 1990 vom 19. bis 21. September in Münster/W, Münster/W, 1990, no. 90,01, pp. 263–273.
    4. M. Stöcker, S. Ernst, H. G. Karge, and J. Weitkamp, “29Si-MAS NMR studies of hydrothermal dealumination of zeolite ZSM-20,” vol. 44, pp. 519–521, 1990.
    5. M. Hunger, D. Freude, H. Pfeifer, and W. Schwieger, “MAS NMR studies of silanol groups in zeolites ZSM-5 synthesized with an ionic template,” Chemical physics letters, vol. 167, no. 1, Art. no. 1, 1990, doi: 10.1016/0009-2614(90)85064-J.
    6. B. Hunger, J. Hoffmann, O. Heitzsch, and M. Hunger, “Temperature-programmed desorption (TPD) of ammonia from HZSM-5 zeolites,” Journal of thermal analysis, vol. 36, no. 4, Art. no. 4, 1990, doi: 10.1007/BF01914061.
    7. B. Günzel, C. H. Berke, S. Ernst, J. Weitkamp, and W.-D. Deckwer, “Adsorption von Diolen aus Fermentationsmedien an hydrophobe Zeolithe,” Chemie - Ingenieur - Technik, vol. 62, no. 9, Art. no. 9, 1990, doi: 10.1002/cite.330620912.
    8. S. Ernst, D. Lindner, and J. Weitkamp, “Zeolithische Eisen- und Gallosilikate als Katalysatoren für die Synthese von organischen Stickstoffbasen,” in Vorträge der DGMK-Haupttagung 1990 vom 19. bis 21. September in Münster/W, Münster/W, 1990, no. 90,01, pp. 581–592.
    9. J. Caro et al., “NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid,” Journal of catalysis, vol. 124, no. 2, Art. no. 2, 1990, doi: 10.1016/0021-9517(90)90185-M.
  33. 1989

    1. J. Weitkamp, M. Schwark, and S. Ernst, “Adsorptive Trennung von 1- und 2-Methylnaphthalin an Zeolithen,” Chemie - Ingenieur - Technik, vol. 61, no. 11, Art. no. 11, 1989, doi: 10.1002/cite.330611108.
    2. J. Weitkamp, R. Kumar, and S. Ernst, “Zeolith Beta,” Chemie - Ingenieur - Technik, vol. 61, no. 9, Art. no. 9, 1989, doi: 10.1002/cite.330610913.
    3. J. Weitkamp and M. Neuber, “Zeolites as catalysts in alkylation,” in Catalysis, concepts and applications, Madras, India, 1989, p. INV 1-1-INV 1-12.
    4. J. Weitkamp, Chen. C. Y., and S. Ernst, “Characterization of zeolites by the spaciousness index,” in Successful design of catalysts, Amsterdam, 1989, no. 44, pp. 343–350.
    5. J. Weitkamp, S. Ernst, and C. Y. Chen, “The spaciousness index,” in Studies in surface science and catalysis, Amsterdam, The Netherland, 1989, vol. B, no. 49, pp. 1115–1129.
    6. J. Weitkamp, M. Sakuth, C.-Y. Chen, and S. Ernst, “Dealumination of zeolite beta using (NH4)2SiF6 and SiCl4,” Journal of the Chemical Society. Chemical communications, no. 24, Art. no. 24, 1989, doi: 10.1039/C39890001908.
    7. N. Van-Den-Begin, L. V. C. Rees, J. Caro, M. Bülow, M. Hunger, and J. Kärger, “Diffusion of ethane in silicalite-1 by frequency response, sorption uptake and nuclear magnetic resonance techniques,” Journal of the Chemical Society. Faraday transactions. 1, Physical chemistry in condensed phases, vol. 85, no. 6, Art. no. 6, 1989, doi: 10.1039/F19898501501.
    8. F. Roessner, K.-H. Steinberg, D. Freude, M. Hunger, and H. Pfeifer, “Nmr and Ir studies of zeolites of the erionite type,” in Zeolites as catalysts, sorbents and detergent builders, Würzburg, 1989, no. 46, pp. 421–427, doi: 10.1016/S0167-2991(08)60998-2.
    9. W. Reschetilowski et al., “Magic-angle-spinning nuclear magnetic resonance and adsorption studies of dealumination and realumination of zeolite ZSM-5,” Applied catalysis, vol. 56, no. 1, Art. no. 1, 1989, doi: 10.1016/S0166-9834(00)80151-7.
    10. M. Neuber and J. Weitkamp, “Shape selectivity at the external surface - a useful concept in zeolite catalysis?,” in Zeolites for the nineties, Amsterdam, 1989, pp. 425–426.
    11. J. Klinowski, H. Hamdan, A. Corma, V. Fornes, M. Hunger, and D. Freude, “1H mas NMR and IR studies of the acidic properties of realuminated zeolite Y,” Catalysis letters, vol. 3, no. 3, Art. no. 3, 1989, doi: 10.1007/BF00766402.
    12. H. G. Karge and J. Weitkamp, Eds., Zeolites as catalysts, sorbents and detergent builders, no. 46. Elsevier, 1989.
    13. M. Hunger, D. Freude, H. Pfeifer, D. Prager, and W. Reschetilowski, “Proton MAS NMR studies of hydroxyl groups in alkaline earth cation-exchanged zeolite Y,” Chemical physics letters, vol. 163, no. 2, Art. no. 2, 1989, doi: 10.1016/0009-2614(89)80039-9.
    14. B. Günzel, J. Weitkamp, S. Ernst, M. Neuber, and W.-D. Deckwer, “Adsorption von Wasser/Alkohol-Gemischen aus der Gasphase an hydrophoben Zeolithen,” Chemie - Ingenieur - Technik, vol. 61, no. 1, Art. no. 1, 1989, doi: 10.1002/cite.330610115.
    15. V. Fulop, G. Borbely, H. K. Beyer, S. Ernst, and J. Weitkamp, “Physico-chemical characterization and framework topology of zeolite ZSM-20,” Journal of the Chemical Society. Faraday transactions, vol. 85, no. 8, Art. no. 8, 1989, doi: 10.1039/F19898502127.
    16. S. Ernst, R. Kumar, and J. Weitkamp, “Zeolite beta,” in Catalysis, concepts and applications, Madras, India, 1989, p. OR 11-1-OR 11-11.
    17. S. Ernst, L. Puppe, and J. Weitkamp, “Synthesis and characterization of CoAPO and CoAPSO molecular sieves,” in Studies in surface science and catalysis, Amsterdam, The Netherland, 1989, vol. A, no. 49, pp. 447–458.
    18. S. Ernst, R. Kumar, and J. Weitkamp, “Studies on the kinetics of ZSM-23 crystallization,” in Zeolite synthesis, Los Angeles, California, 1989, no. 398, pp. 560–573.
    19. S. Ernst, C. Y. Chen, D. Lindner, and J. Weitkamp, “Synthesis and characterization of B-, Al-, Ga- and Fe-silicates with the ZSM-58 framework,” in Zeolites for the nineties, Amsterdam, 1989, pp. 55–56.
    20. S. Ernst, R. Kumar, and J. Weitkamp, “Synthesis and characterization of pyrrolidine-ZSM-51,” in Zeolites for the nineties, Amsterdam, 1989, pp. 45–46.
    21. S. Ernst, J. Weitkamp, J. A. Martens, and P. A. Jacobs, “Synthesis and shape-selective properties of ZSM-22,” Applied catalysis, vol. 48, no. 1, Art. no. 1, 1989, doi: 10.1016/S0166-9834(00)80271-7.
    22. J. Caro et al., “NMR characterization of zeolite H-ZSM-5 after post-synthesis modification with H3PO4,” in Recent Advances in Zeolite Science, Amsterdam, 1989, no. 52, pp. 295–304, doi: 10.1016/S0167-2991(08)60534-0.
    23. E. Brunner et al., “Solid-state n.m.r. and catalytic studies of mildly hydrothermally dealuminated HZSM-5,” Zeolites, vol. 9, no. 4, Art. no. 4, 1989, doi: 10.1016/0144-2449(89)90072-9.
    24. E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, and H. Pfeifer, “MAS NMR studies on superacid sites,” in Studies in surface science and catalysis, Amsterdam, The Netherland, 1989, vol. A, no. 49, pp. 623–632, doi: 10.1016/S0167-2991(08)61760-7.
  34. 1988

    1. J. Weitkamp and H. Dauns, “Generation of multicomponent gas mixtures in catalytic flow-type units,” Applied catalysis, vol. 38, no. 1, Art. no. 1, 1988, doi: 10.1016/S0166-9834(00)80995-1.
    2. J. Weitkamp and S. Ernst, “Shape-selective hydroconversion of hydrocarbons,” in Catalysis 1987, San Diego, CA, 1988, no. 38, pp. 367–382.
    3. J. Weitkamp, “Critical evaluation of catalytic testing of zeolites,” in Innovation in zeolite materials science, Nieuwpoort, Belgium, 1988, no. 37, pp. 515–534.
    4. J. Weitkamp and S. Ernst, “Probing the shape selective properties of zeolites by catalytic hydrocarbon reactions,” Catalysis today, vol. 3, no. 5, Art. no. 5, 1988, doi: 10.1016/0920-5861(88)87028-7.
    5. J. Weitkamp, Grundlagen des simultanen katalytischen Entmetallisierens und Entschwefelns von Schwerölen, no. 354. Hamburg: DGMK, 1988.
    6. J. Völter, J. Caro, M. Bülow, B. Fahlke, J. Kärger, and M. Hunger, “Diffusion, cracking and coking on HZSM-5 of various morphologies,” Applied catalysis, vol. 42, no. 1, Art. no. 1, 1988, doi: 10.1016/S0166-9834(00)80072-X.
    7. M. Neuber, V. Dondur, H. G. Karge, L. Pacheco, S. Ernst, and J. Weitkamp, “Spectroscopic and catalytic characterization of faujasites dealuminated via the (NH4)2SiF6 method,” in Innovation in zeolite materials science, Nieuwpoort, Belgium, 1988, no. 37, pp. 461–469.
    8. M. Neuber, H. G. Karge, and J. Weitkamp, “I.R. spectroscopic characterization of zeolite catalysts for the shape selective conversion of polynuclear aromatics,” in Catalysis today, Bremen, 1988, vol. 3, no. 1, pp. 11–22, doi: 10.1016/0920-5861(88)80014-2.
    9. J. Kärger et al., “NMR investigations on molecular transport in ZSM-5 type zeolites containing structural defects,” Catalysis today, vol. 3, no. 5, Art. no. 5, 1988, doi: 10.1016/0920-5861(88)87033-0.
    10. R. Kumar, S. Ernst, G. T. Kokotailo, and J. Weitkamp, “Probing the shape-selective properties of zeolites ZSM-12 and EU-1 by catalytic test reactions,” in Innovation in zeolite materials science, Nieuwpoort, Belgium, 1988, no. 37, pp. 451–459.
    11. M. Hunger, D. Freude, and H. Pfeifer, “1H MAS studies of acid sites in ZSM-5 type zeolites,” Catalysis today, vol. 3, no. 5, Art. no. 5, 1988, doi: https://doi.org/10.1016/0920-5861(88)87035-4.
    12. D. Freude, H. Ernst, M. Hunger, H. Pfeifer, and E. Jahn, “Magic-angle-spinning NMR studies of zeolite SAPO-5,” Chemical physics letters, vol. 143, no. 5, Art. no. 5, 1988, doi: 10.1016/0009-2614(88)87399-8.
    13. S. Ernst and J. Weitkamp, “Oxidative coupling of methane using zeolite-based catalysts,” in Hydrocarbons - source of energy, Lyon, 1988, pp. 413–421.
    14. S. Ernst, R. Kumar, M. Neuber, and J. Weitkamp, “Characterization of the effective pore width of molecular sieve solids by means of catalytic test reactions,” in Characterization of porous solids, Bad Soden a. Ts., 1988, no. 39, pp. 531–540.
    15. S. Ernst, G. T. Kokotailo, R. Kumar, and J. Weitkamp, “Shape-selective catalysis in zeolites ZSM-22 and ZSM-23,” in Catalysis, theory to practice, Calgary, Alberta, 1988, pp. 388–395.
    16. S. Ernst, R. Kumar, and J. Weitkamp, “Synthesis and catalytic properties of zeolite ZSM-23,” in Catalysis today, Bremen, 1988, vol. 3, no. 1, pp. 1–10, doi: 10.1016/0920-5861(88)80013-0.
    17. S. Ernst, G. T. Kokotailo, and J. Weitkamp, “Factors influencing the synthesis of zeolite ZSM-20,” in Innovation in zeolite materials science, Nieuwpoort, Belgium, 1988, no. 37, pp. 29–36.
    18. E. Brunner, D. Freude, M. Hunger, H. Pfeifer, W. Reschetilowski, and B. Unger, “MAS NMR and IR studies on ZSM-5-type boroaluminozeolites,” Chemical physics letters, vol. 148, no. 2, Art. no. 2, 1988, doi: 10.1016/0009-2614(88)80304-X.
    19. E. Brunner, H. Ernst, D. Freude, M. Hunger, and H. Pfeifer, “Characterization of zeolites by magic-angle spinning NMR,” in Innovation in zeolite materials science, Nieuwpoort (Belgium), 1988, no. 37, pp. 155–165.
  35. 1987

    1. J. Weitkamp and H. Dauns, “Hydrieraktivität und Aciditäbifunktioneller Katalysatoren,” vol. 40, pp. 111–114, 1987.
    2. J. Weitkamp and S. Maixner, “Isobutane/butene alkylation on a LaNaY zeolite,” Zeolites, vol. 7, no. 1, Art. no. 1, 1987, doi: 10.1016/0144-2449(87)90109-6.
    3. J. Weitkamp and S. Ernst, “Charakterisierung von formselektiven Zeolithen im Routinebetrieb,” in Fortschritte in der Katalyseforschung, Frankfurt am Main, 1987, pp. 21–44.
    4. J. Weitkamp, S. Ernst, and R. Kumar, “Zeolith ZSM-12,” Chemie - Ingenieur - Technik, vol. 59, no. 2, Art. no. 2, 1987, doi: 10.1002/cite.330590211.
    5. M. Neuber et al., “Carbonaceous deposits formed on zeolites H-Y, H-ZSM-20 and H-beta during the conversion of polynuclear aromatics,” in Catalyst deactivation 1987, Antwerp, 1987, no. 34, pp. 567–577.
    6. U. Lohse, E. Löffler, M. Hunger, J. Stöckner, and V. Patzelová, “Hydroxyl groups of the non-framework aluminium species in dealuminated Y zeolites,” Zeolites, vol. 7, no. 1, Art. no. 1, 1987, doi: 10.1016/0144-2449(87)90111-4.
    7. W. W. Irion, A. Marhold, and J. Weitkamp, “Ergebnisse des 12. Welt-Erdöl-Kongresses: Raffinerietechnik und Petrochemie,” vol. 103, pp. 424–429, 1987.
    8. M. Hunger et al., “Investigation of internal silanol groups as structural defects in ZSM-5-type zeolites,” Journal of the Chemical Society. Faraday transcations. 1, Physical chemistry in condensed phases, vol. 83, no. 11, Art. no. 11, 1987, doi: 10.1039/F19878303459.
    9. M. Hunger, D. Freude, T. Fröhlich, H. Pfeifer, and W. Schwieger, “1H-MAS n.m.r. studies of ZSM-5 type zeolites,” Zeolites, vol. 7, no. 2, Art. no. 2, 1987, doi: 10.1016/0144-2449(87)90068-6.
    10. D. Freude, M. Hunger, and H. Pfeifer, “Investigation of acidic properties of zeolites by MAS NMR,” vol. 152, no. 1–2, Art. no. 1–2, 1987, doi: 10.1524/zpch.1987.152.Part_1_2.171.
    11. S. Ernst, G. T. Kokotailo, and J. Weitkamp, “Zeolite ZSM-20,” Zeolites, vol. 7, no. 3, Art. no. 3, 1987, doi: 10.1016/0144-2449(87)90047-9.
    12. S. Ernst, P. A. Jacobs, J. A. Martens, and J. Weitkamp, “Synthesis of zeolite ZSM-12 in the system (MTEA)2O-Na2O-SiO2-Al2O3-H2O,” Zeolites, vol. 7, no. 5, Art. no. 5, 1987, doi: 10.1016/0144-2449(87)90015-7.
    13. H. Ernst, D. Freude, M. Hunger, H. Pfeifer, and B. Seiffert, “Untersuchungen der hochauflösenden Protonenresonanz von verschiedenen Alumosilikat-Katalysatoren bei Beladung mit Ammoniak,” vol. 268, no. 2, Art. no. 2, 1987, doi: 10.1515/zpch-1987-26841.
    14. J. Caro et al., “Nuclear magnetic resonance self-diffusion studies of methanol-water mixtures in pentasil-type zeolites,” Journal of the Chemical Society. Faraday transcations. 1, Physical chemistry in condensed phases, vol. 83, no. 6, Art. no. 6, 1987, doi: 10.1039/F19878301843.
  36. 1986

    1. J. Weitkamp, M. Neuber, S. Ernst, and W. Stober, “Evidence for inhibition of platinum-catalyzed hydrocarbon reactions in Na-ZSM-5,” in Seventh International Zeolite Conference, Tokyo, 1986, pp. 303–304.
    2. J. Weitkamp, S. Ernst, H. Dauns, and E. Gallei, “Formselektive Katalyse in Zeolithen,” Chemie - Ingenieur - Technik, vol. 58, no. 8, Art. no. 8, 1986, doi: 10.1002/cite.330580803.
    3. J. Weitkamp, S. Ernst, V. Cortés-Corberén, and G. T. Kokotailo, “Zeolite ZSM-20,” in Seventh International Zeolite Conference, Tokyo, 1986, pp. 239–240.
    4. J. Weitkamp, S. Ernst, and R. Kumar, “The spaciousness index,” Applied catalysis, vol. 27, no. 1, Art. no. 1, 1986, doi: 10.1016/S0166-9834(00)81058-1.
    5. J. Weitkamp, H. K. Beyer, G. Borbély, V. Cortés-Corberén, and S. Ernst, “Isomorphe Substitution in Zeolithen,” Chemie - Ingenieur - Technik, vol. 58, no. 12, Art. no. 12, 1986, doi: 10.1002/cite.330581211.
    6. J. Weitkamp, S. Ernst, P. A. Jacobs, and H. G. Karge, “ZSM-type and related zeolite catalysts in the disproportionation of ethylbenzene,” vol. 39, pp. 13–18, 1986.
    7. J. A. Martens, P. A. Jacobs, and J. Weitkamp, “Attempts to rationalize the distribution of hydrocracked products. I qualitative description of the primary hydrocracking modes of long chain paraffins in open zeolites,” Applied catalysis, vol. 20, no. 1, Art. no. 1, 1986, doi: 10.1016/0166-9834(86)80020-3.
    8. J. A. Martens, P. A. Jacobs, and J. Weitkamp, “Attempts to rationalize the distribution of hydrocracked products. II. Relative rates of primary hydrocracking modes of long chain paraffins in open zeolites,” Applied catalysis, vol. 20, no. 1, Art. no. 1, 1986, doi: 10.1016/0166-9834(86)80021-5.
    9. S. Maixner, C. Y. Chen, P. J. Grobet, P. A. Jacobs, and J. Weitkamp, “Investigation of carbonaceous deposits on a La-Y zeolite catalyst by CP/MAS-13C-NMR spectroscopy,” in New developments in zeolite science and technology, Tokyo, 1986, no. 28, pp. 693–700.
    10. J. Kutscher, H. Pfeifer, M. Hunger, and J. Hellebrand, “Investigation of imbibed water in wheat grains by pulsed 1H NMR,” vol. 34, pp. 113–122, 1986.
    11. H. G. Karge and J. Weitkamp, “Untersuchungen an dealuminierten Mordenit-Katalysatoren,” Chemie - Ingenieur - Technik, vol. 58, no. 12, Art. no. 12, 1986, doi: 10.1002/cite.330581206.
    12. K. Hedden, M. Gauß, R. Rieger, and J. Weitkamp, Hydropyrolyse von Ölen mit Wärmezufuhr durch Teilverbrennung, no. 86,68. Eggenstein-Leopoldshafen: Fachinformationszentrum Energie, Physik, Mathematik GmbH Karlsruhe, 1986.
    13. M. Gauß, K. Hedden, and J. Weitkamp, “Hydropyrolyse von Hexadecan mit Wärmezufuhr durch Teilverbrennung,” vol. 39, pp. 501–504, 1986.
    14. D. Freude, M. Hunger, H. Pfeifer, and W. Schwieger, “1H MAS NMR studies on the acidity of zeolites,” Chemical physics letters, vol. 128, no. 1, Art. no. 1, 1986, doi: 10.1016/0009-2614(86)80146-4.
    15. H. Dauns, S. Ernst, and J. Weitkamp, “The influence of hydrogen sulfide in hydrocracking of n-dodecane over palladium/faujasite catalysts,” in New developments in zeolite science and technology, Tokyo, 1986, no. 28, pp. 787–794.
    16. H. Dauns and J. Weitkamp, “Modelluntersuchungen zum Isomerisieren und Hydrocracken von Alkan-Gemischen an einem Pd/La-Y-Zeolith-Katalysator,” in Verfahrenstechnik 1985, Hamburg, 1986, no. 607, pp. 893–900.
  37. 1985

    1. J. Weitkamp, W. Gerhardt, and P. A. Jacobs, “Isomerization and hydrocracking of alkanes on Pt/Ce-Y, Pt/La-Y and Pd/La-Y zeolites - bifunctional or metallic catalysis?,” in Proceedings of the International Symposium on Zeolite Catalysis, Siófok (Hungary), 1985, no. N.S., 31, 1/2, pp. 261–270.
    2. J. Weitkamp, “Alkylation of hydrocarbons with zeolite catalysts - commercial applications and mechanistic aspects,” in Proceedings of the International Symposium on Zeolite Catalysis, Siófok (Hungary), 1985, no. N.S., 31, 1/2, pp. 271–290.
    3. J. Weitkamp and S. Ernst, “Comparison of the reactions of ethylcyclohexane and 2-methylheptane on Pd/La-Y zeolite,” in Catalysis by acids and bases, Villeurbanne (Lyon), 1985, no. 20, pp. 419–426.
    4. J. Weitkamp and W. Gerhardt, “Grundlagen der hydrierenden katalytischen Entmetallisierung von Mineralölen,” vol. 38, p. 37, 1985.
    5. H. Pfeifer, D. Freude, and M. Hunger, “Nuclear magnetic resonance studies on the acidity of zeolites and related catalysts,” Zeolites, vol. 5, no. 5, Art. no. 5, 1985, doi: 10.1016/0144-2449(85)90158-7.
    6. J. A. Martens, J. Weitkamp, and P. A. Jacobs, “Primary cracking modes of long-chain paraffinic hydrocarbons in open acid zeolites,” in Catalysis by acids and bases, Villeurbanne (Lyon), 1985, no. 20, pp. 427–436.
    7. J. Leyrer, B. Vielhaber, M. I. Zaki, S. Zhuang, J. Weitkamp, and H. Knözinger, “Structure and surface properties of supported oxides,” in A special double issue containing papers presented at the Workshop on Surface Properties of Oxides, Turin (Italy), 1985, no. 13,3–4, pp. 301–314, doi: 10.1016/0254-0584(85)90061-6.
    8. K. Hedden and J. Weitkamp, “Thermal hydrocracking of hydrocarbons,” vol. 8, pp. 271–281, 1985.
    9. S. Ernst and J. Weitkamp, “Hydrocracking of C9 through C11 naphthenes on Pd/La-Y and Pd/H-ZSM-5 zeolites,” in Proceedings of the International Symposium on Zeolite Catalysis, Siófok (Hungary), 1985, no. N.S., 31, 1/2, pp. 457–466.
  38. 1984

    1. G. Zürn, K. Kohlhase, K. Hedden, and J. Weitkamp, “Entwicklungen der Raffinerietechnik: Verfahrenstechnik, Verarbeitung von Rohölen, Rückstäen und Schwerölen,” vol. 37, pp. 62–69, 1984.
    2. G. Zürn, K. Kohlhase, K. Hedden, and J. Weitkamp, “Entwicklungen der Raffinerietechnik - Schmieröl, Produktspezifikation, Betriebsführung,” vol. 37, pp. 115–118, 1984.
    3. J. Weitkamp, W. Gerhardt, and D. Scholl, “Hydrodemetalation of nickel porphyrins over sulfided and reduced CoO-MoO3/?-Al2O3,” in Catalysis for reactions with synthesis gas, catalysis for upgrading crude oil, studies on the working catalyst, Berlin (West), 1984, vol. 2, pp. 269–280.
    4. J. Weitkamp, S. Ernst, and H. G. Karge, “Peculiarities in the conversion of naphthenes on bifunctional catalysts,” vol. 37, pp. 457–462, 1984.
    5. J. Weitkamp and H. Dauns, “Eine neue Methode zur Dosierung gasförmiger Mehrkomponenten-Gemische in Strömungsapparaturen,” Chemie - Ingenieur - Technik, vol. 56, no. 12, Art. no. 12, 1984, doi: 10.1002/cite.330561213.
    6. J. Weitkamp, “Isomerization and hydrogenolysis of long-chain n-alkanes over Pt/Al2O3,” in Actas do 9.o Simpósio Iberoamericano de Catálise, Lisboa 16 - 21 de julho de 1984, Lisboa, 1984, pp. 1332–1341.
    7. J. Weitkamp, Grundlagen der hydrierenden katalytischen Entmetallisierung von Mineralölen, no. 281. Hamburg: Deutsche Gesellschaft für Mineralölwissenschaft und Kohlechemie e.V., 1984.
    8. J. Weitkamp, P. A. Jacobs, and S. Ernst, “Shape-selective isomerization and hydrocracking of naphthenes over Pt/H-ZSM-5 zeolite,” in Structure and reactivity of modified zeolites, Prague, 1984, no. 18, pp. 279–290.
    9. J. A. Martens, M. Tielen, P. A. Jacobs, and J. Weitkamp, “Estimation of the void structure and pore dimensions of molecular sieve zeolites using the hydroconversion of n-decane,” Zeolites, vol. 4, no. 2, Art. no. 2, 1984, doi: https://doi.org/10.1016/0144-2449(84)90044-7.