Dieses Bild zeigt Michael Hunger

Michael Hunger

Herr Apl. Prof. Dr.

Emerit
Institut für Technische Chemie

Kontakt

Pfaffenwaldring 55
70569 Stuttgart
Deutschland
Raum: 0-722

  1. 2022

    1. K. Sato, A. Yamamoto, M. Dyballa, and M. Hunger, “Molecular adsorption by biochar produced by eco-friendly low-temperature carbonization investigated using graphene structural reconfigurations,” Green Chemistry Letters and Reviews, vol. 15, Art. no. 1, 2022, doi: 10.1080/17518253.2022.2048090.
    2. S. Chandra et al., “Remarkable Enhancement of Catalytic Activity of Cu-Complexes in the Electrochemical Hydrogen Evolution Reaction by Using Triply Fused Porphyrin\ast\ast,” ChemSusChem, vol. 16, Art. no. 1, Dec. 2022, doi: 10.1002/cssc.202201146.
    3. B. Sarkar et al., “Remarkable Enhancement of Catalytic Activity of Cu-Complexes in the Electrochemical Hydrogen Evolution Reaction (HER) by Using Triply-Fused Porphyrin,” Jan. 2022, doi: 10.26434/chemrxiv-2021-f6l32-v2.
  2. 2021

    1. K. Sato, T. Orihara, M. Dyballa, and M. Hunger, “Instantaneous Ex Situ Mineral Carbonation Relevant to Alkali Metals in Clay Nanoparticles,” The Journal of Physical Chemistry C, vol. 125, Art. no. 8, Feb. 2021, doi: 10.1021/acs.jpcc.0c11521.
    2. C. Rieg et al., “Noble metal location in porous supports determined by reaction with phosphines,” Microporous and Mesoporous Materials, vol. 310, p. 110594, Jan. 2021, doi: 10.1016/j.micromeso.2020.110594.
    3. S. Lang, M. Dyballa, Y. Traa, D. Estes, E. Klemm, and M. Hunger, “Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods~,” Chemie Ingenieur Technik, vol. 93, Art. no. 6, Feb. 2021, doi: 10.1002/cite.202000128.
    4. B. Gehring, Y. Traa, and M. Hunger, “Elucidation of the versatile Brønsted acidity of nanosized ZSM-5 materials,” Microporous and Mesoporous Materials, vol. 317, p. 110978, Apr. 2021, doi: 10.1016/j.micromeso.2021.110978.
  3. 2020

    1. M. Dyballa et al., “Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports,” Microporous and Mesoporous Materials, p. 109778, Oct. 2020, doi: 10.1016/j.micromeso.2019.109778.
    2. Z. Li et al., “Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials,” Adsorption, Oct. 2020, doi: 10.1007/s10450-020-00275-8.
  4. 2019

    1. X. Zeng et al., “Catalytic arene alkylation over H-Beta zeolite: Influence of zeolite shape selectivity and reactant nucleophilicity,” Journal of Catalysis, vol. 380, pp. 9–20, Dec. 2019, doi: 10.1016/j.jcat.2019.09.035.
    2. R. Rachwalik, K. Góra-Marek, Z. Olejniczak, M. Hunger, and B. Sulikowski, “Tailoring selectivity in the liquid-phase isomerization of $\upalpha$-pinene on dealuminated ferrierite-type zeolites,” Catalysis Today, Mar. 2019, doi: 10.1016/j.cattod.2019.03.045.
    3. T. Yan et al., “Cascade Conversion of Acetic Acid to Isobutene over Yttrium-Modified Siliceous Beta Zeolites,” ACS Catalysis, vol. 9, Art. no. 11, Sep. 2019, doi: 10.1021/acscatal.9b02850.
    4. M. Gackowski, J. Podobiński, and M. Hunger, “Evidence for a strong polarization of n-hexane in zeolite H-ZSM-5 by FT-IR and solid-state NMR spectroscopy,” Microporous and Mesoporous Materials, vol. 273, pp. 67–72, Jan. 2019, doi: 10.1016/j.micromeso.2018.06.054.
    5. L. Yang et al., “Role of Acetaldehyde in the Roadmap from Initial Carbon–Carbon Bonds to Hydrocarbons during Methanol Conversion,” ACS Catalysis, vol. 9, Art. no. 7, Jun. 2019, doi: 10.1021/acscatal.9b00641.
    6. P. Eversfield, T. Lange, M. Hunger, and E. Klemm, “Selective oxidation of o-xylene to phthalic anhydride on tungsten, tin, and potassium promoted VOx on TiO2 monolayer catalysts,” Catalysis Today, vol. 333, pp. 120–126, Aug. 2019, doi: 10.1016/j.cattod.2018.04.025.
    7. Z. Wang et al., “Strongly enhanced acidity and activity of amorphous silica–alumina by formation of pentacoordinated AlV species,” Journal of Catalysis, vol. 372, pp. 1–7, Apr. 2019, doi: 10.1016/j.jcat.2019.02.007.
    8. Z. Wang et al., “High population and dispersion of pentacoordinated AlV species on the surface of flame-made amorphous silica-alumina,” Science Bulletin, vol. 64, Art. no. 8, Apr. 2019, doi: 10.1016/j.scib.2019.04.002.
    9. K. D. Kim, Z. Wang, Y. Jiang, M. Hunger, and J. Huang, “The cooperative effect of Lewis and Brønsted acid sites on Sn-MCM-41 catalysts for the conversion of 1,3-dihydroxyacetone to ethyl lactate,” Green Chem., vol. 21, Art. no. 12, 2019, doi: 10.1039/C9GC00820A.
  5. 2018

    1. Z. Wang et al., “Acidity enhanced AlMCM-41 via ultrasonic irradiation for the Beckmann rearrangement of cyclohexanone oxime to \varepsilon-caprolactam,” Journal of Catalysis, vol. 358, pp. 71–79, Feb. 2018, doi: 10.1016/j.jcat.2017.11.013.
    2. W. Dai et al., “Effect of n-Butanol Cofeeding on the Methanol to Aromatics Conversion over Ga-Modified Nano H-ZSM-5 and Its Mechanistic Interpretation,” ACS CATALYSIS, vol. 8, Art. no. 2, Feb. 2018, doi: 10.1021/acscatal.7b03457.
    3. E. Yuan, W. Dai, G. Wu, N. Guan, M. Hunger, and L. Li, “Facile synthesis of Sn-containing MFI zeolites as versatile solid acid catalysts,” Microporous and Mesoporous Materials, vol. 270, pp. 265–273, Nov. 2018, doi: 10.1016/j.micromeso.2018.05.032.
    4. T. Yan et al., “On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion,” Journal of Catalysis, vol. 367, pp. 7–15, Nov. 2018, doi: 10.1016/j.jcat.2018.08.019.
    5. X. H. Vu, M. Hunger, U. Armbruster, and A. Martin, “Influence of initial Si/Al ratios on the structural, acidic and catalytic properties of nanosized-ZSM-5/SBA-15 analog composites prepared from ZSM-5 precursors,” Journal of Porous Materials, vol. 25, Art. no. 4, Aug. 2018, doi: 10.1007/s10934-017-0514-y.
    6. P. M. Hauser, M. Hunger, and M. R. Buchmeiser, “Silica-Supported Molybdenum Alkylidyne N-Heterocyclic Carbene Catalysts: Relevance of Site Isolation to Catalytic Performance,” CHEMCATCHEM, vol. 10, Art. no. 8, SI, Apr. 2018, doi: 10.1002/cctc.201701654.
    7. T. Yan et al., “Mechanistic Insights into One-Step Catalytic Conversion of Ethanol to Butadiene over Bifunctional Zn–Y/Beta Zeolite,” ACS Catalysis, vol. 8, Art. no. 4, Feb. 2018, doi: 10.1021/acscatal.8b00014.
    8. Z. Wang et al., “Identification of Vicinal Silanols and Promotion of Their Formation on MCM-41 via Ultrasonic Assisted One-Step Room-Temperature Synthesis for Beckmann Rearrangement,” Industrial & Engineering Chemistry Research, vol. 57, Art. no. 16, Apr. 2018, doi: 10.1021/acs.iecr.8b00274.
  6. 2017

    1. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, and L. C. Jaeger, “Differentiation of gel, zeolites and various water species in geopolymer-zeolite composites,” Ceramics international, vol. 43, Art. no. 2, 2017, doi: 10.1016/j.ceramint.2016.11.004.
    2. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, and C. Jaeger, “Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites,” CERAMICS INTERNATIONAL, vol. 43, Art. no. 2, Feb. 2017, doi: 10.1016/j.ceramint.2016.11.004.
    3. H. Koller, T. Uesbeck, M. R. Hansen, and M. Hunger, “Characterizing the First and Second Al-27 Neighbors of Bronsted and Lewis Acid Protons in Zeolites and the Distribution of Al-27 Quadrupolar Couplings by H-1\Al-27\ Offset REAPDOR,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 121, Art. no. 46, Nov. 2017, doi: 10.1021/acs.jpcc.7b09544.
    4. K. Sato and M. Hunger, “Molecular studies of Cs adsorption sites in inorganic layered materials: the influence of solution concentration,” PHYSICAL CHEMISTRY CHEMICAL PHYSICS, vol. 19, Art. no. 28, Jul. 2017, doi: 10.1039/c7cp02814h.
    5. H. Koller, T. Uesbeck, M. R. Hansen, and M. Hunger, “Characterizing the First and Second 27Al Neighbors of Brønsted and Lewis Acid Protons in Zeolites and the Distribution of 27Al Quadrupolar Couplings by 1H$łbrace$27Al$\rbrace$ Offset REAPDOR,” The Journal of Physical Chemistry C, vol. 121, Art. no. 46, Nov. 2017, doi: 10.1021/acs.jpcc.7b09544.
    6. U. Obenaus, S. Lang, R. Himmelmann, and M. Hunger, “Parahydrogen-Induced Hyperpolarization inside Meso- and Micropores of Pt-, Rh-, Ir-, and Pd-Containing Solid Catalysts,” The Journal of Physical Chemistry C, vol. 121, Art. no. 18, Apr. 2017, doi: 10.1021/acs.jpcc.7b01899.
    7. S. Lang et al., “Mechanisms of the AlCl3 Modification of Siliceous Microporous and Mesoporous Catalysts Investigated by Multi-Nuclear Solid-State NMR,” Topics in Catalysis, vol. 60, Art. no. 19, Dec. 2017, doi: 10.1007/s11244-017-0837-6.
    8. U. Obenaus, G. Althoff-Ospelt, S. Lang, R. Himmelmann, and M. Hunger, “Separation of anti-phase signals due to para-hydrogen induced polarization via 2D nutation NMR spectroscopy,” ChemPhysChem, vol. 18, Art. no. 5, 2017, doi: 10.1002/cphc.201601227.
    9. K. Sato and M. Hunger, “Molecular studies of Cs adsorption sites in inorganic layered materials,” ChemPhysChem, vol. 19, Art. no. 28, 2017, doi: 10.1039/C7CP02814H.
    10. S. Greiser, P. Sturm, G. J. G. Gluth, M. Hunger, and C. Jäger, “Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites,” Ceramics International, vol. 43, Art. no. 2, Feb. 2017, doi: 10.1016/j.ceramint.2016.11.004.
    11. W. Dai et al., “Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density,” Catal. Sci. Technol., vol. 7, Art. no. 3, 2017, doi: 10.1039/C6CY02564A.
  7. 2016

    1. U. Obenaus, F. Neher, M. Scheibe, M. Dyballa, S. Lang, and M. Hunger, “Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis,” The Journal of Physical Chemistry C, vol. 120, Art. no. 4, Jan. 2016, doi: 10.1021/acs.jpcc.5b11367.
    2. M. Dyballa et al., “Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion,” MICROPOROUS AND MESOPOROUS MATERIALS, vol. 233, pp. 26–30, Oct. 2016, doi: 10.1016/j.micromeso.2016.06.044.
    3. K. Sato, K. Fujimoto, W. Dai, and M. Hunger, “Quantitative Elucidation of Cs Adsorption Sites in Clays: Toward Sophisticated Decontamination of Radioactive Cs,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 120, Art. no. 2, Jan. 2016, doi: 10.1021/acs.jpcc.5b09350.
    4. S. Lang, M. Benz, U. Obenaus, R. Himmelmann, and M. Hunger, “Novel Approach for the Characterization of Lewis Acidic Solid Catalysts by Solid-State NMR Spectroscopy,” CHEMCATCHEM, vol. 8, Art. no. 12, Jun. 2016, doi: 10.1002/cctc.201600372.
    5. S. Lang and M. Hunger, “Modification of Co-FCC catalysts and their characterization by solid-state NMR spectroscopy,” 2016.
    6. H. Koller et al., “Post-Synthesis Conversion of Borosilicate Zeolite Beta to an Aluminosilicate with Isolated Acid Sites: A Quantitative Distance Analysis by Solid-State NMR,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 120, Art. no. 18, May 2016, doi: 10.1021/acs.jpcc.6b01680.
    7. M. Dyballa et al., “Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22,” APPLIED CATALYSIS A-GENERAL, vol. 510, pp. 233–243, Jan. 2016, doi: 10.1016/j.apcata.2015.11.017.
    8. U. Obenaus, S. Lang, and M. Hunger, “Relationships between the hydrogenation and dehydrogenation properties of Rh,- Ir-, Pd-, and Pt-containing zeolites Y,” 2016.
    9. S. Greiser, M. Hunger, and C. Jaeger, “Si-29\Al-27\ TRAPDOR MAS NMR to distinguish Q(n)(mAl) sites in aluminosilicates. Test case: Faujasite-type zeolites,” SOLID STATE NUCLEAR MAGNETIC RESONANCE, vol. 79, pp. 6–10, Oct. 2016, doi: 10.1016/j.ssnmr.2016.10.004.
    10. K. D. Kim et al., “Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation Reactions via Optimizing the Parameters of the Double-Flame Spray Pyrolysis,” ACS Catalysis, vol. 6, Art. no. 4, Mar. 2016, doi: 10.1021/acscatal.6b00396.
    11. W. Dai et al., “Lewis acid catalysis confined in zeolite cages as a strategy for sustainable heterogeneous hydration of epoxides,” ACS catalysis, vol. 6, Art. no. 5, 2016, doi: 10.1021/acscatal.5b02823.
    12. K. D. Kim et al., “Tailoring High-Performance Pd Catalysts for Chemoselective Hydrogenation Reactions via Optimizing the Parameters of the Double-Flame Spray Pyrolysis,” ACS CATALYSIS, vol. 6, Art. no. 4, Apr. 2016, doi: 10.1021/acscatal.6b00396.
    13. S. Greiser, M. Hunger, and C. Jäger, “29Si27Al TRAPDOR MAS NMR to distinguish Qn(mAl) sites in aluminosilicates. Test case: Faujasite-type zeolites,” Solid State Nuclear Magnetic Resonance, vol. 79, pp. 6–10, Oct. 2016, doi: 10.1016/j.ssnmr.2016.10.004.
  8. 2015

    1. X. Sun, W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Evidence of rutile-to-anatase photo-induced electron transfer in mixed-phase TiO2 by solid-state NMR spectroscopy,” CHEMICAL COMMUNICATIONS, vol. 51, Art. no. 72, 2015, doi: 10.1039/c5cc04971g.
    2. L. T. Hoai Nam, T. Quang Vinh, N. Duc Hoa, and M. Hunger, “Synthesis and characterization of ZSM-5/SBA-15 composite material,” International journal of nanotechnology, vol. 12, Art. no. 5–7, 2015, doi: 10.1504/IJNT.2015.067904.
    3. U. Obenaus, M. Dyballa, S. Lang, M. Scheibe, and M. Hunger, “Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy,” The Journal of Physical Chemistry C, vol. 119, Art. no. 27, Jun. 2015, doi: 10.1021/acs.jpcc.5b03149.
    4. Z. Wang et al., “Influence of support acidity on the performance of size-confined Pt nanoparticles in the chemoselective hydrogenation of acetophenone,” Catal. Sci. Technol., vol. 5, Art. no. 5, 2015, doi: 10.1039/C5CY00214A.
    5. G. Näfe et al., “Deactivation behavior of alkali-metal zeolites in the dehydration of lactic acid to acrylic acid,” JOURNAL OF CATALYSIS, vol. 329, pp. 413–424, Sep. 2015, doi: 10.1016/j.jcat.2015.05.017.
    6. U. Obenaus, S. Lang, and M. Hunger, “Brønsted acidity of noble metal-containing zeolite catalysts studied by solid-state NMR upon adsorption of probe molecules,” 2015. [Online]. Available: /brokenurl#129.69.96.39/hunger/bilder/Poster_Obenaus_2015_4.pdf
    7. Y. Jiang, J. Huang, M. Hunger, M. Maciejewski, and A. Baiker, “Comparative studies on the catalytic activity and structure of a Cu-MOF and its precursor for alcoholysis of cyclohexene oxide,” CATALYSIS SCIENCE & TECHNOLOGY, vol. 5, Art. no. 2, 2015, doi: 10.1039/c4cy00916a.
    8. B. Tang et al., “Incorporation of cerium atoms into Al-free Beta zeolite framework for catalytic application,” Chinese Journal of Catalysis, vol. 36, Art. no. 6, Jun. 2015, doi: 10.1016/s1872-2067(14)60277-1.
    9. M. Dyballa et al., “Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange,” Microporous and Mesoporous Materials, vol. 212, pp. 110–116, Aug. 2015, doi: 10.1016/j.micromeso.2015.03.030.
    10. B. Tang et al., “Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides,” Green Chem., vol. 17, Art. no. 3, 2015, doi: 10.1039/C4GC02116A.
    11. S. Sen, R. Schowner, D. A. Imbrich, W. Frey, M. Hunger, and M. R. Buchmeiser, “Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica,” CHEMISTRY-A EUROPEAN JOURNAL, vol. 21, Art. no. 39, Sep. 2015, doi: 10.1002/chem.201501615.
    12. W. Dai, M. Dyballa, G. Wu, L. Li, N. Guan, and M. Hunger, “Intermediates and Dominating Reaction Mechanism During the Early Period of the Methanol-to-Olefin Conversion on SAPO-41,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, Art. no. 5, Feb. 2015, doi: 10.1021/jp5118757.
    13. W. Dai et al., “Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from NMR Spectroscopy and DFT Calculations,” ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol. 54, Art. no. 30, Jul. 2015, doi: 10.1002/anie.201502748.
    14. L. T. H. Nam, T. Q. Vinh, N. D. Hoa, and M. Hunger, “Synthesis and characterisation of ZSM-5/SBA-15 composite material,” INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, vol. 12, Art. no. 5–7, 2015, doi: 10.1504/IJNT.2015.067904.
    15. W. Dai et al., “Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34,” ACS Catalysis, vol. 5, Art. no. 1, Dec. 2015, doi: 10.1021/cs5015749.
  9. 2014

    1. K. Sato, K. Numata, W. Dai, and M. Hunger, “Long-term self-assembly of inorganic layered materials influenced by the local states of the interlayer cations,” vol. 16, Art. no. 22, 2014, doi: 10.1039/c4cp00990h.
    2. X. H. Vu, U. Bentrup, M. Hunger, R. Kraehnert, U. Armbruster, and A. Martin, “Direct synthesis of nanosized-ZSM-5/SBA-15 analog composites from preformed ZSM-5 precursors for improved catalytic performance as cracking catalyst,” Journal of materials science, vol. 49, Art. no. 16, 2014, doi: 10.1007/s10853-014-8287-z.
    3. B. Tang, W. Dai, G. Wu, N. Guan, L. Li, and M. Hunger, “Improved post-synthesis strategy to Sn-Beta zeolites as Lewis acid catalysts for the ring-open hydration of epoxides,” vol. 4, pp. 2801–2810, 2014.
    4. M. Hunger, “In situ MAS NMR spectroscopy.” Centre for Surface Chemistry and Catalysis, KU Leuven, Belgium, 2014.
    5. X. Sun, M. Dyballa, J. Yan, L. Li, N. Guan, and M. Hunger, “Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2,” vol. 94, pp. 34–40, 2014, doi: 10.1016/j.cplett.2014.01.014.
    6. Z. Wang, Y. Jiang, M. Hunger, A. Baiker, and J. Huang, “Catalytic performance of Bronsted and Lewis acid sites in phenylglyoxal conversion on flame-derived silica-zirconia,” vol. 6, Art. no. 10, 2014, doi: 10.1002/cctc.201402397.
    7. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Verifying the dominant catalytic cycle of the methanol-to-hydrocarbon conversion over SAPO-41,” vol. 2014, Art. no. 4, 2014, doi: 10.1039/C3CY00740E.
    8. Z. Wang, L. Wang, Y. Jiang, M. Hunger, and J. Huang, “The cooperativity of Bronsted and Lewis acid sites on zeolite for glycerol dehydration,” vol. 4, pp. 1144–1147, 2014.
    9. T. T. H. Dang, D.-L. Hoang, M. Schneider, M. Hunger, and A. Martin, “Impact of conventional and microwave heating on SAPO-5 formation and Brønsted acidic properties,” Zeitschrift für anorganische und allgemeine Chemie, ZAAC, vol. 640, Art. no. 8–9, 2014, doi: 10.1002/zaac.201400014.
    10. W. Dai et al., “Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13,” Journal of catalysis, vol. 314, pp. 10–20, 2014, doi: 10.1016/j.jcat.2014.03.006.
    11. E. Roduner, Ch. Jensen, J. v. Slageren, R. A. Rakozy, O. Larlus, and M. Hunger, “Anomalous diamagnetic susceptibility in 13-atom Pt nanocluster superatoms,” vol. 53, pp. 4318–4321, 2014.
    12. K. Sato, W. Numata, K. nd Dai, and M. Hunger, “Tunable states of interlayer cations in two-dimensional materials,” vol. 104, p. 131901, 2014, doi: 10.1063/1.4870006.
  10. 2013

    1. Z. Wang, S. Pokhrel, M. Chen, M. Hunger, L. Mädler, and J. Huang, “Palladium-doped silica-alumina catalysts obtained from double-flame FSP for chemoselective hydrogenation of the model aromatic ketone acetophenone,” Journal of catalysis, vol. 302, pp. 10–19, 2013, doi: 10.1016/j.jcat.2013.02.017.
    2. H. Henning, M. Dyballa, M. Scheibe, E. Klemm, and M. Hunger, “In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y,” Chemical physics letters, vol. 555, pp. 258–262, 2013, doi: 10.1016/j.cplett.2012.10.068.
    3. K. Sato, K. Fujimoto, W. Dai, and M. Hunger, “Molecular mechanism of heavily adhesive Cs,” The @journal of physical chemistry. C, Nanomaterials and interfaces, vol. 117, Art. no. 27, 2013, doi: 10.1021/jp403899w.
    4. Z. Wang et al., “One-step room-temperature synthesis of AlMCM-41 materials for the catalytic conversion of phenylglyoxal to ethylmandelate,” ChemCatChem, vol. 5, Art. no. 12, 2013, doi: 10.1002/cctc.201300375.
    5. M. Dyballa, E. Klemm, J. Weitkamp, and M. Hunger, “Effect of phosphate modification on the Bronsted acidity and methanol-to-olefin conversion activity of Zeolite ZSM-5,” vol. 85, Art. no. 11, 2013, doi: 10.1002/cite.201300066.
    6. D. Santi, S. Rabl, V. Calemma, M. Dyballa, M. Hunger, and J. Weitkamp, “Effect of noble metals on the strength of Bronsted acid sites in bifunctional zeolites,” vol. 5, Art. no. 6, 2013, doi: 10.1002/cctc.201200675.
    7. W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts,” ACS catalysis, vol. 3, Art. no. 4, 2013, doi: 10.1021/cs400007v.
    8. U. Filek, D. Mucha, M. Hunger, and B. Sulikowski, “Novel gallium and indium salts of the 12-tungstophosphoric heteropolyacid: Synthesis, characterization and catalytic properties,” vol. 30, pp. 19–22, 2013.
  11. 2012

    1. K. Sato, K. Fujimoto, K. Kawamura, W. Dai, and M. Hunger, “Rheological mechanism of long-term self-assembly in saponite nanoparticles,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 116, Art. no. 43, 2012, doi: 10.1021/jp307358d.
    2. S. Opelt, V. Krug, J. Sonntag, M. Hunger, and E. Klemm, “Investigations on stability and reusability of Pd(2-pymo)2n as hydrogenation catalyst,” vol. 147, pp. 327–333, 2012.
    3. W. Dai, M. Scheibe, L. Li, N. Guan, and M. Hunger, “Effect of the methanol-to-olefin conversion on the PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 116, Art. no. 3, 2012, doi: 10.1021/jp208815g.
    4. M. Hunger, “Contributions of solid-state NMR to the development and understanding of solid catalysts.” Institute of New Catalytic Materials Sciences, Nankai University, Tianjin, P.R. China, 2012.
    5. X. Wang, W. Dai, G. Wu, L. Li, N. Guan, and M. Hunger, “Phosphorus modified HMCM-22,” Microporous and mesoporous materials, vol. 151, pp. 99–106, 2012, doi: 10.1016/j.micromeso.2011.11.008.
    6. R. Rachwalik, M. Hunger, and B. Sulikowski, “Transformations of monoterpene hydrocarbons on ferrierite type zeolites,” Applied catalysis. A, General, vol. 427, pp. 98–105, 2012, doi: 10.1016/j.apcata.2012.03.037.
    7. M. Hunger, “In situ solid-state NMR investigation of the interaction and conversion of ethylbenzene on acidic zeolite catalysts,” 2012.
    8. R. Rachwalik, M. Hunger, and B. Sulikowski, “Transformations of monoterpene hydrocarbons on ferrierte type zeolites,” vol. 427/428, pp. 98–105, 2012.
    9. M. Dyballa, M. Scheibe, M. Hunger, W. Dai, L. Li, and N. Guan, “PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34 upon using as MTO catalyst,” 2012.
    10. H. Henning, M. Dornbach, M. Scheibe, E. Klemm, and M. Hunger, “In situ MAS NMR investigation of the hydrogenation of acrylonitrile on Pt- and Rh-containing zeolites Y,” Microporous and mesoporous materials, vol. 164, pp. 104–110, 2012, doi: 10.1016/j.micromeso.2012.06.021.
    11. W. Dai, X. Wang, G. Wu, L. Li, N. Guan, and M. Hunger, “Methanol-to-olefin conversion catalyzed by low-silica AlPO-34 with traces of Bronsted acid sites,” ChemCatChem, vol. 4, Art. no. 9, 2012, doi: 10.1002/cctc.201100503.
  12. 2011

    1. W. Dai, M. Scheibe, N. Guan, L. Li, and M. Hunger, “Fate of Bronsted acid sites and benzene-based carbenium ions during methanol-to-olefin conversion on SAPO-34,” ChemCatChem, vol. 3, Art. no. 7, 2011, doi: 10.1002/cctc.201100059.
    2. M. Hunger, “Nutzung der Festkörper-NMR-Spektroskopie für die Entwicklung und Charakterisierung von Feststoff-Katalysatoren.” University Kaiserslautern, Department of Chemistry, 2011.
    3. Y. Jiang, J. Huang, W. Dai, and M. Hunger, “Solid-state nuclear magnetic resonance investigations of the nature, property, and activity of acid sites on solid catalysts,” Solid state nuclear magnetic resonance, vol. 39, Art. no. 3, 2011, doi: 10.1016/j.ssnmr.2011.03.007.
    4. W. Dai, X. Wang, G. Wu, N. Guan, M. Hunger, and L. Li, “Methanol-to-olefin conversion on silicoaluminophosphate catalysts,” ACS Catalysis, vol. 1, Art. no. 4, 2011, doi: 10.1021/cs200016u.
    5. M. Hunger, “Mechanisms of the methanol-to-hydrocarbon (MTH) conversion on acidic zeolite catalysts,” 2011.
    6. J. Huang, Y. Jiang, N. v. Vegten, M. Hunger, and A. Baiker, “Tuning the support acidity of flame-made Pd/SiO2-Al2O3 catalysts for chemoselective hydrogenation,” Journal of catalysis, vol. 281, Art. no. 2, 2011, doi: http://dx.doi.org/10.1016/j.jcat.2011.05.023.
    7. W. Dai, N. Li, L. Li, N. Guan, and M. Hunger, “Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves,” Catalysis communications, vol. 16, Art. no. 1, 2011, doi: 10.1016/j.catcom.2011.09.025.
    8. M. Hunger, “Solid-state NMR as an analytical tool for the development of catalyst systems,” 2011.
  13. 2010

    1. E. Weber et al., “Immobilization of P450 BM-3 monooxygenase on mesoporous molecular sieves with different pore diameters,” Journal of molecular catalysis. B, Enzymatic, vol. 64, Art. no. 1, 2010, doi: 10.1016/j.molcatb.2010.01.020.
    2. J. Huang, N. v. Vegten, Y. Jiang, M. Hunger, and A. Baiker, “Incrasing the Bronsted acidity of flame-derived silica-alumina up to zeolitic strength,” vol. 49, pp. 7776–7781, 2010, doi: 10.1002/anie.201003391.
    3. J. Frey et al., “Quantitative solid-state NMR investigation of V5+ species in VPO catalysts upon sequential selective oxidation of n-butane,” Journal of catalysis, vol. 272, Art. no. 1, 2010, doi: 10.1016/j.jcat.2010.03.004.
    4. V. R. R. Marthala, J. Frey, and M. Hunger, “Accessibility and interaction of surface OH groups in microporous and mesoporous catalysts applied for vapor-phase Beckmann rearrangement of oximes,” Catalysis letters, vol. 135, Art. no. 1, 2010, doi: 10.1007/s10562-010-0274-7.
    5. C. Lieder, S. Opelt, M. Dyballa, H. Henning, E. Klemm, and M. Hunger, “Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 114, Art. no. 39, 2010, doi: 10.1021/jp105700b.
    6. J. Frey and M. Hunger, “UV/Vis and solid-state NMR investigation of the effect of sequential reaction conditions on VPO catalysts during selective oxidation of n-butane,” 2010.
    7. M. Hunger, “In situ solid-state NMR investigation of the reactivity of ethylbenzene in acidic zeolites,” 2010.
    8. M. Hunger, “Catalytically active sites,” vol. 2, J. Cejka, Ed., Weinheim: Wiley-VCH, 2010, pp. 493–546.
    9. A. Bressel, J. Frey, U. Filek, B. Sulikowski, D. Freude, and M. Hunger, “Oxygen coordination of aluminum cations in dehydrated AlPW12O40 investigated by solid-state NMR spectroscopy,” Chemical physics letters, vol. 487, Art. no. 4, 2010, doi: 10.1016/j.cplett.2010.01.048.
    10. Y. Jiang, J. Huang, S. Marx, W. Kleist, M. Hunger, and A. Baiker, “Effect of dehydration on the local structure of framework aluminum atoms in mixed linker MIL-53(Al) materials studied by solid-state NMR spectroscopy,” The journal of physical chemistry letters, vol. 1, Art. no. 19, 2010, doi: 10.1021/jz1010835.
  14. 2009

    1. J. Frey, Y. S. Ooi, B. Thomas, R. V. R. and Marthala, A. Bressel, and M. Hunger, “Vanadium phosphates on mesoporous supports,” 2009.
    2. J. Frey et al., “Vanadium phosphates on mesoporous supports,” Solid state nuclear magnetic resonance, vol. 35, Art. no. 2, 2009, doi: 10.1016/j.ssnmr.2009.02.005.
    3. M. Hunger, “Techniques and applications of in situ solid-state NMR spectroscopy in heterogeneous catalysis,” 2009.
    4. M. Hunger, “Solid-state NMR spectroscopy,” in Zeolite characterization and catalysis, Dordrecht: Springer, 2009, pp. 65–106.
    5. J. Huang, Y. Jiang, V. R. R. Marthala, A. Bressel, J. Frey, and M. Hunger, “Effect of pore size and acidity on the coke formation during ethylbenzene conversion on zeolite catalysts,” Journal of catalysis, vol. 263, pp. 277–283, 2009.
    6. Y. Jiang et al., “Adsorption-Desorption Induced Structural Changes of Cu-MOF Evidenced by Solid State NMR and EPR Spectroscopy,” Journal of the American Chemical Society, vol. 131, Art. no. 6, 2009, doi: 10.1021/ja8088718.
  15. 2008

    1. M. Hunger, “NMR spectroscopy for the characterization of surface acidity and basicity,” 2 ed., vol. 2, G. Ertl, Ed., Weinheim: Wiley-VCH, 2008, pp. 1163–1178.
    2. W. Wang and M. Hunger, “Reactivity of surface alkoxy species on acidic zeolite catalysts,” Accounts of chemical research, vol. 41, Art. no. 8, 2008, doi: 10.1021/ar700210f.
    3. M. Hunger, “Solid-state NMR characterization of Broensted acid sites in solid catalysts,” 2008.
    4. M. Hunger, “In situ flow MAS NMR spectroscopy,” Progress in nuclear magnetic resonance spectroscopy, vol. 53, Art. no. 3, 2008, doi: 10.1016/j.pnmrs.2007.08.001.
    5. J. Huang, Y. Jiang, V. R. R. Marthala, and M. Hunger, “Insight into the mechanisms of the ethylbenzene disproportionation,” Journal of the American Chemical Society, JACS, vol. 130, Art. no. 38, 2008, doi: 10.1021/ja8042849.
    6. R. Wolf et al., “The homoleptic sandwich anion Co(P2C2tBu2)2-,” Angewandte Chemie. International edition, vol. 47, Art. no. 24, 2008, doi: 10.1002/anie.200800813.
    7. J. Huang, Y. Jiang, V. R. R. Marthala, B. Thomas, E. Romanova, and M. Hunger, “Characterization and acidic properties of aluminum-exchanged zeolites X and Y,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 112, Art. no. 10, 2008, doi: 10.1021/jp7103616.
    8. U. Filek, A. Bressel, B. Sulikowski, and M. Hunger, “Structural stability and Bronsted acidity of thermally treated AlPW12O40 in comparison with H3PW12O40,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 112, Art. no. 49, 2008, doi: 10.1021/jp807947v.
    9. M. Hunger and W. Wang, “Solid-state NMR spectroscopy,” 2 ed., vol. 2, G. Ertl, Ed., Weinheim: Wiley-VCH, 2008, pp. 912–932.
    10. V. R. R. Marthala, S. Rabl, and M. Hunger, “Solid-state MAS NMR studies on the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime,” 2008.
    11. M. Hunger, “State of the art and applications of in situ solid-state NMR spectroscopy in heterogeneous catalysis,” 2008.
    12. V. R. R. Marthala, S. Rabl, J. Huang, S. A. S. Rezai, B. Thomas, and M. Hunger, “In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFI-type zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol,” Journal of Catalysis, vol. 257, Art. no. 1, 2008, doi: 10.1016/j.jcat.2008.04.014.
    13. J. Huang, Y. Jiang, V. R. R. Marthala, Y. S. Ooi, and M. Hunger, “Regioselective H/D exchange at the side-chain of ethylbenzene on dealuminated zeolite H-Y studied by in situ MAS NMR-UV/Vis spectroscopy,” ChemPhysChem, vol. 9, Art. no. 8, 2008, doi: 10.1002/cphc.200800065.
  16. 2007

    1. Y. Jiang, J. Huang, J. Weitkamp, and M. Hunger, “In situ MAS NMR and UV/Vis spectroscopic studies of hydrocarbon pool compounds and coke deposits formed in the methanol-to-olefin conversion on H-SAPO-34,” in Studies in surface science and catalysis, vol. B. Elsevier, 2007, pp. 1137–1144.
    2. J. Huang, Y. Jiang, and M. Hunger, “Influence of the lanthanum exchange degree on the concentration and acid strength of bridging hydroxyl groups in zeolites La, Na-X,” in Studies in surface science and catalysis, R. Xu, Z. Gao, J. Chen, and W. Yan, Eds., 2007, pp. 622–628. doi: 10.1016/S0167-2991(07)80900-1.
    3. Y. Jiang, J. Huang, V. R. R. Marthala, Y. S. Ooi, J. Weitkamp, and M. Hunger, “In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially coked in the methanol-to-olefin conversion under continuous-flow conditions and of their regeneration,” Microporous and mesoporous materials, vol. 105, Art. no. 1, 2007, doi: 10.1016/j.micromeso.2007.05.028.
    4. M. Hunger, “Moderne Methoden der In-situ-Festkörper-NMR-Spektroskopie in der heterogenen Katalyse,” Chemie - Ingenieur - Technik, CIT, vol. 79, Art. no. 6, 2007, doi: 10.1002/cite.200700008.
    5. R. Rachwalik, Z. Olejniczak, J. Jian, J. Huang, M. Hunger, and B. Sulikowski, “Isomerization of alpha-pinene over dealuminated ferrierite-type zeolites,” Journal of catalysis, vol. 252, Art. no. 2, 2007, doi: 10.1016/j.jcat.2007.10.001.
    6. J. Weitkamp and M. Hunger, “Acid and base catalysis on zeolites,” in Introduction to zeolite science and practice, J. Cejka, Ed., in Studies in surface science and catalysis. , Amsterdam: Elsevier, 2007, pp. 787–835.
    7. Y. Jiang, J. Huang, W. Wang, and M. Hunger, “Formation of methylamines by the reaction of ammonia with surface methoxy species on zeolite H-Y and the silicoaluminophosphate H-SAPO-34,” Studies in surface science and catalysis, vol. 170, pp. 1331–1337, 2007, doi: 10.1016/S0167-2991(07)80996-7.
    8. V. R. R. Marthala, W. Wang, J. Jiao, Y. Jiang, J. Huang, and M. Hunger, “Effect of probe molecules with different proton affinities on the coordination of boron atoms in dehydrated zeolite H-BZSM-5,” in Microporous and mesoporous materials, D. J. Jons, B. Prelot, J. J. Zajac, and M. Stöcker, Eds., 2007, pp. 91–97. doi: 10.1016/j.micromeso.2006.07.034.
    9. Y. Jiang, W. Wang, and M. Hunger, “Formation of methylamines by the reaction of ammonia with surface methoxy species on zeolite H-Y and the silicoaluminophosphate H-SAPO-34,” 2007.
    10. J. Huang, Y. Jiang, V. R. R. Marthala, W. Wang, B. Sulikowski, and M. Hunger, “In situ 1H MAS NMR investigations of the H/D exchange of alkylaromatic hydrocarbons on zeolites H-Y, La,Na-Y, and H-ZSM-5,” in Microporous and mesoporous materials, 2007, pp. 86–90. doi: 10.1016/j.micromeso.2006.06.041.
    11. V. R. R. Marthala, W. Wang, R. Gläser, and M. Hunger, “Beckmann rearrangement of 15N-cyclohexanone oxime to caprolactam on silicalite-1, H-ZSM-5, and H-BZSM-5 studied by solid-state NMR spectroscopy,” 2007.
    12. U. Filek, A. Mohamed, M. Hunger, and B. Sulikowski, “Oxidation of norbornene over heteropolyacids and their salts,” in XIV Forum Zeolitowe, 16 - 21 wrzesnia 2007, Kocierz, Polskie Towarzystwo Zeolitowe, 2007, pp. 327–337.
    13. Y. Jiang and M. Hunger, “Ex situ and in situ MAS NMR-UV/Vis spectroscopic study of hydrocarbon pool compounds and coke deposits formed by methanol conversion on H-SAPO-34,” 2007.
  17. 2006

    1. J. Jiao, W. Wang, B. Sulikowski, J. Weitkamp, and M. Hunger, “29Si and 27Al MAS NMR characterization of non-hydrated zeolites Y upon adsorption of ammonia,” Microporous and mesoporous materials, vol. 90, Art. no. 1–3, 2006, doi: 10.1016/j.micromeso.2005.08.006.
    2. J. Jiao et al., “Effects of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms in dehydrated zeolite H, Na-Y,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry, vol. 110, Art. no. 28, 2006, doi: 10.1021/jp0612533.
    3. J. Morell et al., “Synthesis and characterization of highly ordered bifunctional aromatic periodic mesoporous organosilicas with different pore sizes,” Journal of materials chemistry, vol. 16, Art. no. 27, 2006, doi: 10.1039/B603458F.
    4. M. V. Luzgin et al., “Mechanism studies of the conversion of 13C-labeled n-butane on zeolite H-ZSM-5 by using 13C magic angle spinning NMR spectroscopy and GC-MS analysis,” Chemistry - a European journal, vol. 12, Art. no. 2, 2006, doi: 10.1002/chem.200500382.
    5. Y. Jiang, W. Wang, V. R. R. Marthala, J. Huang, B. Sulikowski, and M. Hunger, “Response to comments on the paper: “Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts” by Y. Jiang, W. Wang, V.R.R. Marthala, J. Huang, B. Sulikowski, M. Hunger,” Journal of catalysis, vol. 244, Art. no. 1, 2006, doi: 10.1016/j.jcat.2006.08.001.
    6. M. Hunger and W. Wang, “Characterization of solid catalysts in the functioning state by nuclear magnetic resonance spectroscopy,” Advances in catalysis, vol. 50, pp. 149–225, 2006, doi: 10.1016/S0360-0564(06)50004-5.
    7. Y. Jiang, M. Hunger, and W. Wang, “On the reactivity of surface methoxy species in acidic zeolites,” Journal of the American Chemical Society, vol. 128, Art. no. 35, 2006, doi: 10.1021/ja061018y.
    8. W. Wang, Y. Jiang, and M. Hunger, “Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy,” Catalysis today, vol. 113, Art. no. 1–2, 2006, doi: 10.1016/j.cattod.2005.11.015.
    9. V. R. R. Marthala, Y. Jiang, J. Huang, W. Wang, R. Gläser, and M. Hunger, “Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites silicalite-1, H-ZSM-5, and H-BZSM-5 studied by solid-state NMR spectroscopy,” Journal of the American Chemical Society, vol. 128, Art. no. 46, 2006, doi: 10.1021/ja066392c.
    10. Y. Jiang, W. Wang, V. R. R. Marthala, J. Huang, B. Sulikowski, and M. Hunger, “Effect of organic impurities on the hydrocarbon formation via the decomposition of surface methoxy groups on acidic zeolite catalysts,” Journal of catalysis, vol. 238, Art. no. 1, 2006, doi: 10.1016/j.jcat.2005.11.029.
    11. V. R. R. Marthala, W. Wang, J. Jiao, and M. Hunger, “Coordination transformation of boron atoms in zeolite H-BZSM-5 upon the adsorption of probe molecules studied by solid-state NMR spectroscopy,” 2006.
    12. Y. Jiang, V. R. R. Marthala, W. Wang, and M. Hunger, “Effect of organic impurities in the hydrocarbon formation via the decomposition of surface methoxy groups on solid acid catalysts,” 2006.
  18. 2005

    1. W. Wang, J. Jiao, Y. Jiang, and M. Hunger, “Formation and decomposition of surface ethoxy groups on acidic zeolite Y studied be the in situ MAS NMR-UV/Vis spectroscopy,” 2005.
    2. J. Weitkamp and M. Hunger, “Preparation of zeolites via the dry-gel synthesis method,” vol. 155, pp. 1–11, 2005.
    3. J. Weitkamp and M. Hunger, “Preparation of zeolites via the dry-gel method,” in Oxide based materials, in Studies in surface science and catalysis. , Amsterdam: Elsevier, 2005, pp. 1–12.
    4. M. Hunger, “In situ spectroscopy in heterogeneous catalysis.” Indian Institute of Petroleum (IIP), Dehra Dun, India, 2005.
    5. W. Wang, J. Jiao, Y. Jiang, S. S. Ray, and M. Hunger, “Formation and decomposition of surface ethoxy species on acidic zeolite Y,” ChemPhysChem, vol. 6, Art. no. 8, 2005, doi: 10.1002/cphc.200500262.
    6. M. Xu, W. Wang, J. Weitkamp, and M. Hunger, “Dry-gel synthesis of mesoporous MCM-41 materials with modified pore structure,” vol. 219, pp. 877–890, 2005.
    7. M. Hunger, “Aluminum distribution in non-hydrated zeolite catalysts studied by ex situ and in situ solid-state NMR spectroscopy,” 2005.
    8. M. Hunger, “Ex situ and in situ solid-state NMR investigations of activated zeolite catalysts and heterogeneous reaction systems,” 2005.
    9. J. Jiao et al., “Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T,” vol. 7, pp. 3221–3226, 2005, doi: 10.1039/B508358C.
    10. J. Jiao, W. Wang, and M. Hunger, “Quantitative characterization of aluminum species in non-hydrated zeolites Y by 27Al spin-echo NMR spectroscopy,” 2005.
    11. M. Hunger, “Applications of in situ spectroscopy in zeolite catalysis,” in Microporous and mesoporous materials, C. T. O’Connor, K. P. Möller, J. Weitkamp, and G. J. Hutchings, Eds., 2005, pp. 241–255. doi: 10.1016/j.micromeso.2005.01.037.
    12. M. Hunger, “In situ solid-state NMR spectroscopy in zeolite science.” National Laboratory of Chemistry (NCL), Poona, India, 2005.
    13. J. Jiao, S. S. Ray, W. Wang, J. Weitkamp, and M. Hunger, “Effect of dehydration on the local structure of framework silicon atoms in zeolites Y investigated by solid-state NMR spectroscopy,” Zeitschrift für anorganische und allgemeine Chemie, ZAAC, vol. 631, Art. no. 2–3, 2005, doi: 10.1002/zaac.200400329.
    14. A. G. Stepanov, M. V. Luzgin, S. S. Arzumanov, W. Wang, M. Hunger, and D. Freude, “n-Butane conversion on sulfated zirconia,” Catalysis letters, vol. 101, Art. no. 3, Jun. 2005, doi: 10.1007/s10562-005-4887-1.
    15. M. Hunger, “Solid-state NMR spectroscopy in heterogeneous catalysis,” 2005.
  19. 2004

    1. M. Hunger and E. Brunner, “Characterization I - NMR spectroscopy,” vol. 1, P. Behrens, Ed., in Molecular sieves, vol. 1. , Berlin: Springer, 2004, pp. 201–293.
    2. M. Hunger, “In situ NMR spectroscopy in heterogeneous catalysis,” Catalysis today, vol. 97, Art. no. 1, 2004, doi: 10.1016/j.cattod.2004.03.061.
    3. S. Altwasser, J. Jiao, S. Steuernagel, J. Weitkamp, and M. Hunger, “Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy,” 2004.
    4. A. Buchholz, W. Wang, J. Jiao, and M. Hunger, “Preparation and characterization of mesoporous silicoaluminophosphates,” 2004.
    5. M. Hunger, S. Altwasser, S. Steuernagel, and J. Weitkamp, “Elucidating the dealumination mechanism of zeolite H-Y by solid-state NMR spectroscopy,” E. W. J. v. Steen, M. Callanan, and C. Claeys, Eds., in Studies in surface science and catalysis, vol. C. Elsevier, 2004, pp. 3098–3105.
    6. W. Wang, P. L. De Cola, R. Gläser, I. I. Ivanova, J. Weitkamp, and M. Hunger, “Methylation of phenol by methanol on acidic zeolite H-Y investigated by in situ CF MAS NMR spectroscopy,” Catalysis Letters, vol. 94, Art. no. 1, 2004, doi: 10.1023/B:CATL.0000019341.67169.ac.
    7. A. Buchholz, W. Wang, M. Xu, A. Arnold, and M. Hunger, “Sequential steps of ammoniation of the microporous silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 108, Art. no. 10, 2004, doi: 10.1021/jp030249d.
    8. A. Arnold, M. Hunger, and J. Weitkamp, “Dry-gel synthesis of zeolites AlEU-1 and GaEU-1,” Microporous and mesoporous materials, vol. 67, Art. no. 2–3, 2004, doi: 10.1016/j.micromeso.2003.10.010.
    9. M. Hunger and J. Weitkamp, “Nuclear magnetic resonance,” in In-situ spectroscopy of catalysts, B. M. Weckhuysen, Ed., Stevenson Ranch, Calif.: American Scientific Publishers, 2004, pp. 177–218.
    10. M. Hunger and W. Wang, “Formation of cyclic compounds and carbenium ions by conversion of methanol on weakly dealuminated zeolite H-ZSM-5 investigated via a novel in situ CF MAS NMR/UV-Vis technique,” vol. 2004, pp. 584–585, 2004, doi: 10.1039/B315779B.
    11. I. I. Ivanova et al., “An in situ 13C MAS NMR study of the zeolite-catalyzed alkylation of polar aromatics,” E. W. J. v. Steen, M. Callanan, and C. Claeys, Eds., in Studies in surface science and catalysis, vol. C. Elsevier, 2004, pp. 2221–2227.
    12. A. Simon, J. Köhler, P. Keller, J. Weitkamp, A. Buchholz, and M. Hunger, “Phase transformation of zeolites Cs,Na-Y and Cs,Na-X impregnated with cesium hydroxide,” Microporous and mesoporous materials, vol. 68, Art. no. 1–3, 2004, doi: 10.1016/j.micromeso.2003.12.019.
    13. J. Jiao, W. Wang, A. Buchholz, and M. Hunger, “PInvestigation of the cationic state of extra-framework aluminum in steamed zeolites H-Y by solid-state NMR spectroscopy,” 2004.
    14. M. Hunger and J. Weitkamp, “In situ magnetic resonance techniques,” in In-situ spectroscopy of catalysts, B. M. Weckhuysen, Ed., Stevenson Ranch, Calif.: American Scientific Publishers, 2004, pp. 177–218.
    15. J. Jiao, S. Altwasser, W. Wang, J. Weitkamp, and M. Hunger, “State of aluminum in dealuminated, nonhydrated zeolites Y investigated by multinuclear solid-state NMR spectroscopy,” The Journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 108, Art. no. 38, 2004, doi: 10.1021/jp040081b.
    16. M. Hunger, “In situ solid-state NMR investigations of the conversion of methanol on acidic zeolites under continuous-flow conditions,” 2004.
  20. 2003

    1. M. Hunger, “In situ NMR spectroscopy in heterogeneous catalysis,” 2003.
    2. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, W. Wang, M. Hunger, and J. Weitkamp, “Mechanism of aniline methylation on zeolite catalysts investigated by in situ13C NMR spectroscopy,” Kinetics and catalysis, vol. 44, Art. no. 5, 2003, doi: 10.1023/A:1026158525990.
    3. W. Wang, A. Buchholz, M. Seiler, and M. Hunger, “Evidence for an initiation of the methanol-to-olefin process by reactive surface methoxy groups on acidic zeolite catalysts,” Journal of the American Chemical Society, vol. 125, Art. no. 49, 2003, doi: 10.1021/ja0304244.
    4. A. Buchholz, W. Wang, A. Arnold, M. Xu, and M. Hunger, “Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy,” Microporous and mesoporous materials, vol. 57, Art. no. 2, 2003, doi: 10.1016/S1387-1811(02)00562-0.
    5. M. Hunger, “Modern application of in situ NMR spectroscopy in heterogeneous catalysis,” 2003.
    6. W. Wang, M. Xu, A. Buchholz, A. Arnold, and M. Hunger, “Time-resolved observation of the decomposition process of N,N,N-Trimethylanilinium cations on zeolite H-Y by in situ stopped-flow 13C MAS NMR spectroscopy,” in Magnetic resonance imaging, P. Fantazzini, Ed., 2003, p. 329 332. doi: 10.1016/S0730-725X(03)00163-2.
    7. M. Xu, W. Wang, and M. Hunger, “Formation of acetone enol on acidic zeolite ZSM-5 evidenced by H/D exchange,” Chemical communications, ChemComm, vol. 2003, Art. no. 6, 2003, doi: 10.1039/B212701F.
    8. W. Wang, A. Buchholz, I. I. Ivanova, J. Weitkamp, and M. Hunger, “Synthesis and immobilization of quaternary ammonium cations in acidic zeolites,” vol. 2003, pp. 2600–2601, 2003.
    9. A. Arnold, S. Steuernagel, M. Hunger, and J. Weitkamp, “Insight into the dry-gel synthesis of gallium-rich zeolite GaBeta,” Microporous and mesoporous materials, vol. 62, Art. no. 1–2, 2003, doi: 10.1016/S1387-1811(03)00397-4.
    10. W. Wang, A. Buchholz, A. Arnold, M. Xu, and M. Hunger, “Effect of surface methoxy groups on the 27Al quadrupole parameters of framework aluminum atoms in calcined zeolite H-Y,” vol. 370, pp. 88–93, 2003.
    11. M. Xu and M. Hunger, “H/D exchange of acetone-d6 adsorbed on zeolite H-ZSM-5,” 2003.
    12. W. Wang, A. Buchholz, A. Arnold, M. Xu, J. Weitkamp, and M. Hunger, “Synthesis of quaternary ammonium cations on acidic zeolite catalysts,” 2003.
    13. M. Seiler, W. Wang, A. Buchholz, and M. Hunger, “Direct evidence for a catalytically active role of the hydrocarbon pool formed on zeolite H-ZSM-5 during the methanol-to-olefin conversion,” Catalysis letters, vol. 88, Art. no. 3, 2003, doi: 10.1023/A:1024018023895.
    14. M. Hunger, “Recent applications of in situ NMR spectroscopy in heterogeneous catalysis,” 2003.
    15. S. Altwasser, S. Steuernagel, J. Weitkamp, and M. Hunger, “Influence of the coordination change of aluminum atoms on the Broensted acidity of dealuminated zeolites,” 2003.
  21. 2002

    1. M. Xu and M. Hunger, “Preparation of strong Broensted acid sites on MCM-41 by treatment with AlCl3,” 2002.
    2. M. Hunger, “Applications of in situ NMR spectroscopy in heterogeneous catalysis.” Institute of Physical Chemistry at the LMU Munich, Germany, 2002.
    3. M. Xu, W. Wang, M. Seiler, A. Buchholz, and M. Hunger, “Improved Bronsted acidity of mesoporous AlMCM-41 material treated with ammonium fluoride,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 106, Art. no. 12, 2002, doi: 10.1021/jp014222a.
    4. A. Buchholz, W. Wang, M. Xu, A. Arnold, and M. Hunger, “Thermal stability and dehydroxylation of Bronsted acid sites in silicoaluminophosphates H-SAPO-11, H-SAPO-18, H-SAPO-31, and H-SAPO-34 investigated by multi-nuclear solid-state NMR spectroscopy,” Microporous and mesoporous materials, vol. 56, Art. no. 3, 2002, doi: 10.1016/S1387-1811(02)00491-2.
    5. W. Wang, M. Seiler, J. Weitkamp, and M. Hunger, “In situ stopped-flow (SF) MAS NMR investigation of the formation and decomposition of methylanilinium cations on acidic zeolite H-Y,” 2002.
    6. M. Xu, A. Arnold, A. Buchholz, W. Wang, and M. Hunger, “Low-temperature modification of mesoporous MCM-41 material with sublimated aluminum chloride in vacuum,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 106, Art. no. 47, 2002, doi: 10.1021/jp021308a.
    7. A. Buchholz and M. Hunger, “Effect of water and ammonia on H-SAPO-34 and H-SAPO-37 studied by in situ CF MAS NMR spectroscopy,” 2002.
    8. W. Wang, M. Seiler, I. I. Ivanova, U. Sternberg, J. Weitkamp, and M. Hunger, “Formation and decomposition of N,N,N-trimethylanilinium cations on zeolite H-Y investigated by in situ stopped-flow MAS NMR spectroscopy,” Journal of the American Chemical Society, vol. 124, Art. no. 25, 2002, doi: 10.1021/ja012675n.
    9. A. Arnold, M. Hunger, and J. Weitkamp, “NMR investigations of the dry gel synthesis of zeolite beta,” 2002.
    10. M. Hunger, “Applications of in situ MAS NMR spectroscopy in zeolite science.” Faculties of Physics und Chemistry at the University of Leipzig, Germany, 2002.
    11. I. I. Ivanova et al., “Aniline methylation on modified zeolites with acidic, basic and redox properties,” in Impact of zeolites ond other porous materials on the new technologies at the beginning of the new millenium, R. Aiello and F. Giordano, Eds., in Studies in surface science and catalysis. Elsevier, 2002, pp. 659–666.
    12. R. A. Rakoczy, M. Breuninger, M. Hunger, Y. Traa, and J. Weitkamp, “Template-free synthesis of zeolite ferrierite and characterization of its acid sites,” Chemical engineering & technology, vol. 25, Art. no. 3, 2002, doi: 10.1002/1521-4125(200203)25:3<273::AID-CEAT273>3.0.CO;2-4.
  22. 2001

    1. A. Arnold, M. Hunger, and J. Weitkamp, “Dry-gel-Synthese von Zeolithen des Typs GaBeta und deren quantitative Charakterisierung mittels NMR-Spektroskopie,” Chemie - Ingenieur - Technik, vol. 73, Art. no. 12, 2001, doi: 10.1002/1522-2640(200112)73:12<1588::AID-CITE1588>3.0.CO;2-H.
    2. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, Yu. G. Kolyagin, M. Hunger, and J. Weitkamp, “Mechanistic study of aniline methylation over acidic and basic zeolites Y,” vol. 135, pp. 23–P, 2001.
    3. M. Hunger, M. Seiler, and A. Buchholz, “In situ MAS NMR spectroscopic investigation of the conversion of methanol to olefins on silicoaluminophosphates SAPO-34 and SAPO-18 under continuous flow conditions,” Catalysis letters, vol. 74, Art. no. 1, Jun. 2001, doi: 10.1023/A:1016687014695.
    4. M. Breuninger, C. Berger, R. A. Rakoczy, M. Hunger, and J. Weitkamp, “Cumolsynthese an Zeolithen,” Chemie - Ingenieur - Technik, vol. 73, Art. no. 7, 2001, doi: 10.1002/1522-2640(200107)73:7<869::AID-CITE869>3.0.CO;2-X.
    5. M. Hunger and J. Weitkamp, “In-situ-IR-, -NMR-, -EPR- und -UV/Vis-Spektroskopie. Wege zu neuen Erkenntnissen in der heterogenen Katalyse,” vol. 113, pp. 3040–3059, 2001.
    6. M. Weihe, M. Hunger, M. Breuninger, H. G. Karge, and J. Weitkamp, “Influence of the nature of residual alkali cations on the catalytic activity of zeolites X, Y, and EMT in their Bronsted acid forms,” Journal of catalysis, vol. 198, Art. no. 2, 2001, doi: 10.1006/jcat.2000.3137.
    7. W. Wang, M. Seiler, and M. Hunger, “Role of surface methoxy species in the conversion of methanol to dimethyl ether on acidic zeolites investigated by in situ stopped-flow MAS NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 105, Art. no. 50, 2001, doi: 10.1021/jp0129784.
    8. A. Raichle, S. Moser, Y. Traa, M. Hunger, and J. Weitkamp, “Gallium-containing zeolites,” Catalysis communications, vol. 2, Art. no. 1, 2001, doi: 10.1016/S1566-7367(01)00003-6.
    9. M. Hunger and J. Weitkamp, “In situ IR, NMR, EPR, and UV/Vis spectroscopy,” vol. 40, pp. 2954–2971, 2001.
    10. M. Seiler, W. Wang, and M. Hunger, “Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ MAS NMR spectroscopy,” 2001.
    11. I. I. Ivanova, E. B. Pomakhina, A. I. Rebrov, M. Hunger, Yu. G. Kolyagin, and J. Weitkamp, “Surface species formed during aniline methylation on zeolite H-Y investigated by in situ MAS NMR spectroscopy,” vol. 203, pp. 375–381, 2001.
    12. S. Caldarelli, A. Buchholz, and M. Hunger, “Investigation of sodium cations in dehydrated zeolites LSX, X, and Y by 23Na off-resonance RIACT triple-quantum and high-speed MAS NMR spectroscopy,” Journal of the American Chemical Society, vol. 123, Art. no. 29, 2001, doi: 10.1021/ja0102538.
    13. J. Weitkamp, R. A. Rakoczy, M. Breuninger, M. Hunger, and Y. Traa, “Templatfreie Synthese von Zeolith Ferrierit und Charakterisierung seiner sauren Zentren,” Chemie - Ingenieur - Technik, vol. 73, Art. no. 8, 2001, doi: 10.1002/1522-2640(200108)73:8<1024::AID-CITE1024>3.0.CO;2-A.
    14. M. Seiler, W. Wang, and M. Hunger, “Local structure of framework aluminum in zeolite H-ZSM-5 during conversion of methanol investigated by in situ NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 105, Art. no. 34, 2001, doi: 10.1021/jp004455m.
    15. J. Weitkamp, M. Hunger, and U. Rymsa, “Base catalysis on microporous and mesoporous materials,” Microporous and mesoporous materials, vol. 48, Art. no. 1, 2001, doi: 10.1016/S1387-1811(01)00366-3.
    16. W. Wang, M. Seiler, I. I. Ivanova, J. Weitkamp, and M. Hunger, “In situ stopped-flow (SF) MAS NMR spectroscopy,” vol. 2001, pp. 1362–1363, 2001.
    17. M. Hunger, A. Buchholz, and U. Schenk, “High-temperature MAS NMR investigation of the mobility of cations and guest compounds in zeolites X and Y,” 2001.
    18. A. Raichle, M. Ramin, D. Singer, M. Hunger, Y. Traa, and J. Weitkamp, “Influence of the aluminum content of zeolite H-ZSM-5 on the conversion of methylcyclohexane into a high-quality synthetic steamcracker feedstock,” Catalysis communications, vol. 2, Art. no. 2, 2001, doi: 10.1016/S1566-7367(01)00012-7.
    19. U. Rymsa, M. Hunger, and J. Weitkamp, “Catalytic in situ infrared spectroscopic study of n-butyraldehyde aldol condensation,” in Zeolites and mesoporous materials at the dawn of the 21st century, A. Galarneau, Ed., in Studies in surface science and catalysis. Elsevier, 2001, p. 235.
    20. M. Hunger, “Modern applications of in situ NMR spectroscopy in heterogeneous catalysis,” 2001.
    21. M. Hunger, A. Buchholz, and U. Schenk, “High temperature MAS NMR investigation of the mobility of cations and guest compounds in zeolites Y and X,” vol. 135, pp. 14–P, 2001.
  23. 2000

    1. M. Hunger, “Heterogeneously catalyzed reactions studied by in situ MAS NMR under continuous-flow conditions,” 2000.
    2. M. Hunger, U. Schenk, and A. Buchholz, “Mobility of cations and guest compounds in cesium-exchanged and impregnated zeolites Y and X investigated by high-temperature MAS NMR spectroscopy,” The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical, vol. 104, Art. no. 51, 2000, doi: 10.1021/jp001571g.
    3. T. Horvath, M. Seiler, and M. Hunger, “A comparative study of methyl-tert-butyl ether synthesis on zeolites HY, HBeta, HBeta/F and HZSM-5 by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography,” Applied catalysis. A, General, vol. 193, Art. no. 1, 2000, doi: 10.1016/S0926-860X(99)00432-9.
    4. M. Seiler, A. Buchholz, and M. Hunger, “Conversion of methanol to hydrocarbons on acidic HZSM-5, HMOR, HSAPO-34, and HSAPO-18 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography,” 2000.
    5. B. Burger, K. Haas-Santo, M. Hunger, and J. Weitkamp, “Synthesis and characterization of aluminium-rich zeolite ZSM-5,” Chemical engineering & technology, vol. 23, Art. no. 4, 2000, doi: 10.1002/(SICI)1521-4125(200004)23:4<322::AID-CEAT322>3.0.CO;2-S.
    6. M. Hunger, “In situ CF MAS NMR investigations of heterogeneously catalyzed reactions,” 2000.
    7. M. Hunger, U. Schenk, M. Seiler, and J. Weitkamp, “In situ MAS NMR spectroscopy of surface compounds formed from methanol and from a toluene/methanol mixture on basic zeolite X,” Journal of molecular catalysis. A, Chemical, vol. 156, Art. no. 1, 2000, doi: 10.1016/S1381-1169(99)00404-5.
  24. 1999

    1. M. Hunger, “Moderne Anwendungen der In-situ-NMR-Spektroskopie in der heterogenen Katalyse.” Institute of Chemical Technology, Ruhr University Bochum, Germany, 1999.
    2. U. Schenk, M. Hunger, and J. Weitkamp, “Characterization of basic guest compounds on solid catalysts by 13C CP/MAS NMR spectroscopy of surface methoxy groups,” Magnetic resonance in chemistry, MRC, vol. 37, Art. no. 13, 1999, doi: 10.1002/(SICI)1097-458X(199912)37:133.0.CO;2-A.
    3. H. G. Karge, M. Hunger, and H. Beyer, “Characterization of zeolites,” in Catalysis and zeolites, J. Weitkamp, Ed., Berlin: Springer, 1999, pp. 198–326.
    4. M. Seiler, U. Schenk, and M. Hunger, “Conversion of methanol to hydrocarbons on zeolite HZSM-5 investigated by in situ MAS NMR spectroscopy under flow conditions and on-line gas chromatography,” vol. 62, Art. no. 2–4, 1999.
    5. M. Hunger, M. Seiler, and T. Horvath, “A technique for simultaneous in situ MAS NMR and on-line gas chromatographic studies of hydrocarbon conversions on solid catalysts under flow conditions,” Catalysis letters, vol. 57, Art. no. 4, Mar. 1999, doi: 10.1023/A:1019064003201.
    6. M. Hunger, U. Schenk, B. Burger, and J. Weitkamp, “Influence of guest compounds on the base strength of zeolites Y and X investigated by NMR spectroscopy,” M. Treacy, Ed., MRS, Materials Research Society, 1999, pp. 2503–2510.
    7. J. Weitkamp, M. Breuninger, H. G. Karge, and M. Hunger, “Peculiarities of Bronsted acid sites in FER-type zeolites,” M. Treacy, Ed., MRS, Materials Research Society, 1999, pp. 2697–2704.
    8. M. Hunger, U. Schenk, M. Breuninger, R. Gläser, and J. Weitkamp, “Characterization of the acid sites in MCM-41-type materials by spectroscopic and catalytic techniques,” Microporous and mesoporous materials, vol. 27, Art. no. 2, 1999, doi: 10.1016/S1387-1811(98)00260-1.
    9. U. Rymsa, M. Hunger, H. Knözinger, and J. Weitkamp, “Spectroscopic and catalytic characterization of basic zeolites and related porous materials,” in Porous materials in environmentally friendly processes, I. Kiricsi, Ed., in Studies in surface science and catalysis. Elsevier, 1999, pp. 197–204.
    10. B. Burger, K. Haas-Santo, M. Hunger, and J. Weitkamp, “Synthese und Charakterisierung von aluminiumreichen ZSM-5-Zeolithen,” Chemie - Ingenieur - Technik, vol. 71, Art. no. 7, 1999, doi: 10.1002/cite.330710718.
  25. 1998

    1. J. Stelzer, M. Paulus, M. Hunger, and J. Weitkamp, “Hydrophobic properties of all-silica zeolite beta,” Microporous and mesoporous materials, vol. 22, Art. no. 1, 1998, doi: 10.1016/S1387-1811(98)00071-7.
    2. M. Hunger, U. Schenk, and J. Weitkamp, “Mechanistic studies of the side-chain alkylation of toluene with methanol on basic zeolites Y by multi-nuclear NMR spectroscopy,” Journal of molecular catalysis. A, Chemical, vol. 134, Art. no. 1, 1998, doi: 10.1016/S1381-1169(98)00026-0.
    3. M. Hunger, “In-situ-NMR-Spektroskopie an heterogenen Reaktionssystemen.” Institute of Chemical Engineering at the University Karlsruhe (TH), Germany, 1998.
    4. M. Hunger, “Untersuchung heterogener Reaktionssysteme mittels In-situ-MAS-NMR-Spektroskopie.” Institute of Chemical Technology at the University of Dresden, Germany, 1998.
    5. M. Hunger, “Modern applications of in situ MAS NMR spectroscopy in heterogeneous catalysis.” Laboratoire de Materiaux Mineraux, Ecole Nationale Superieure de Chemie de Mulhouse, France, 1998.
    6. M. Hunger, T. Horvath, and J. Weitkamp, “Methyl tertiary-butyl ether synthesis on zeolite HBeta investigated by in situ MAS NMR spectroscopy under continuous-flow conditions,” Microporous and mesoporous materials, vol. 22, Art. no. 1, 1998, doi: 10.1016/S1387-1811(98)00078-X.
    7. M. Hunger, “Heterogeneously catalyzed reactions studied by in situ MAS NMR spectroscopy.” Institut de Recherches sur la Catalyse - C.N.R.S., Villeurbanne, France, 1998.
    8. R. Gläser, R. Li, M. Hunger, S. Ernst, and J. Weitkamp, “Zeolite HNU-87,” Catalysis letters, vol. 50, Art. no. 3, Mar. 1998, doi: 10.1023/A:1019039723906.
  26. 1997

    1. M. Hunger and T. Horvath, “Sorption of methanol on zeolite HBeta investigated by in situ MAS NMR spectroscopy,” Catalysis letters, vol. 49, Art. no. 1, Nov. 1997, doi: 10.1023/A:1019028532141.
    2. M. Hunger, “In-situ-NMR-Untersuchungen heterogen katalysierter Reaktionen unter Stroemungsbedingungen,” 1997.
    3. M. Hunger and T. Horvath, “Conversion of propan-2-ol on zeolites LaNaY and HY investigated by gas chromatography and in situ MAS NMR Spectroscopy under continuous-flow conditions,” Journal of catalysis, vol. 167, Art. no. 1, 1997, doi: 10.1006/jcat.1997.1562.
    4. M. Hunger, P. Sarv, and A. Samoson, “Two-dimensional triple-quantum 23Na MAS NMR spectroscopy of sodium cations in dehydrated zeolites,” Solid state nuclear magnetic resonance, vol. 9, Art. no. 2, 1997, doi: 10.1016/S0926-2040(97)00051-9.
    5. M. Hunger, T. Horvath, and J. Weitkamp, “Conversion of propan-2-ol on zeolite La,Na-Y investigated by in situ MAS NMR spectroscopy under continuous-flow conditions,” H. Chon, Ed., in Studies in surface science and catalysis, vol. B. Elsevier, 1997, pp. 853–860.
    6. S. Ernst, M. Hunger, and J. Weitkamp, “Hydrothermalsynthese und physikalisch-chemische Charakterisierung von Zeolith MCM-58,” Chemie - Ingenieur - Technik, vol. 69, Art. no. 1–2, 1997, doi: 10.1002/cite.330690109.
    7. M. Hunger, U. Schenk, B. Burger, and J. Weitkamp, “Synergismus zwischen Gastkomponente und Wirtgerüst im Zeolith CsNaY nach Imprägnierung mit Caesiumhydroxid,” Angewandte Chemie, vol. 109, Art. no. 22, 1997, doi: 10.1002/ange.19971092232.
    8. M. Hunger, T. Horvath, and J. Weitkamp, “MTBE synthesis on zeolites investigated by in situ NMR spectroscopy,” in Proceedings of the DGMK-Conference “C4 Chemistry - Manufacture and Use of C4 Hydrocarbons”, October 6-8, 1997, Aachen, Germany, in DGMK Tagungsbericht. DGMK, 1997, pp. 65–72.
    9. M. Hunger, “Moderne Anwendungen der In-situ-NMR-Spektroskopie in der heterogenen Katalyse,” 1997.
    10. M. Hunger, “Bronsted acid sites in zeolites characterized by multinuclear solid-state NMR spectroscopy,” Catalysis reviews, vol. 39, Art. no. 4, 1997, doi: 10.1080/01614949708007100.
    11. M. Hunger, U. Schenk, B. Burger, and J. Weitkamp, “Synergism between the guest compound and the host framework in zeolite Cs,Na-Y after impregnation with cesium hydroxide,” vol. 36, Art. no. 22, 1997, doi: 10.1002/anie.199725041.
    12. U. Weiß, M. Weihe, M. Hunger, H. G. Karge, and J. Weitkamp, “The induction period in ethylbenzene disproportionation over large-pore zeolites,” H. Chon, Ed., in Studies in surface science and catalysis, vol. B. Elsevier, 1997, pp. 973–980.
  27. 1996

    1. J. Weitkamp et al., “Solid-state ion exchange of alkali metal cations into zeolite Y,” in Studies in surface science and catalysis, vol. B. Elsevier, 1996, pp. 731–740.
    2. M. Hunger, “Solid-state NMR investigations of zeolites.” Leverhulme Centre for Innovative Catalysis, The University of Liverpool, U.K., 1996.
    3. M. Hunger, “Anwendung der Festkoerper-NMR-Spektroskopie zur Charakterisierung von Zeolithen,” 1996.
    4. M. Feuerstein, M. Hunger, G. Engelhardt, and J. P. Amoureux, “Characterisation of sodium cations in dehydrated zeolite NaX by 23Na NMR spectroscopy,” Solid state nuclear magnetic resonance, vol. 7, Art. no. 2, 1996, doi: 10.1016/S0926-2040(96)01246-5.
    5. M. Hunger, “Multinuclear solid-state NMR studies of acidic and non-acidic hydroxyl protons in zeolites,” Solid state nuclear magnetic resonance, vol. 6, Art. no. 1, 1996, doi: 10.1016/0926-2040(95)01201-X.
    6. M. Hunger, S. Ernst, S. Steuernagel, and J. Weitkamp, “High-field H MAS NMR investigations of acidic and non-acidic hydroxyl groups in zeolites H-Beta, H-ZSM-5, H-ZSM-58 and H-MCM-22,” Microporous materials, vol. 6, Art. no. 5, 1996, doi: https://doi.org/10.1016/0927-6513(96)00043-0.
    7. M. Hunger, “Moderne physikochemische Methoden zur Aufklaerung nanoporöser Materialien.” Faculty of Chemistry, University of Bayreuth, Germany, 1996.
    8. M. Hunger, “Conversion of propan-2-ol on zeolite Y investigated by in situ MAS NMR spectroscopy under continuous-flow conditions,” 1996.
    9. M. Hunger and T. Horvath, “Adsorption of methanol on Bronsted acid sites in zeolite H-ZSM-5 investigated by multinuclear solid-state NMR spectroscopy,” Journal of the American Chemical Society, vol. 118, Art. no. 49, 1996, doi: 10.1021/ja962425k.
    10. M. Hunger, “Ex situ and in situ solid-state NMR investigations of Bronsted sites in zeolites,” 1996.
  28. 1995

    1. M. Hunger, T. Horvath, G. Engelhardt, and H. G. Karge, “Multi-nuclear NMR study of the interaction of SiOHAl groups with cationic and neutral guest-molecules in dehydrated zeolites Y and ZSM-5,” in Catalysis by microporous materials, H. K. Beyer, H. G. Karge, I. Kiricsi, and J. B. Nagy, Eds., in Studies in surface science and catalysis, vol. 94. Elsevier, 1995, pp. 756–763. doi: 10.1016/S0167-2991(06)81293-0.
    2. H. Klein, H. Fuess, and M. Hunger, “Cation location and migration in lanthanum-exchanged zeolite NaY studied by X-ray powder diffraction and MAS NMR spectroscopy,” Journal of the Chemical Society. Farady transcations, vol. 91, Art. no. 12, 1995, doi: 10.1039/FT9959101813.
    3. M. Hunger and T. Horvath, “Multi-nuclear solid-state NMR study of the local structure of SiOHAl groups and their interaction with probe-molecules in dehydrated faujasite, mordenite and zeolite ZSM-5,” Berichte der Bunsen-Gesellschaft für Physikalische Chemie, vol. 99, Art. no. 11, 1995, doi: 10.1002/bbpc.199500077.
    4. M. Hunger, “Techniken und Anwendungen der Festkoerper-NMR-Spektroskopie zur Charakterisierung von Bronsted-Zentren in Zeolithen,” 1995.
    5. M. Hunger and T. Horvath, “A new MAS NMR probe for in situ investigations of hydrocarbon conversion on solid catalysts under continuous-flow conditions,” Journal of the Chemical Society. Chemical communications, J. Chem. Soc., Chem. Commun., Art. no. 14, 1995, doi: 10.1039/C39950001423.
    6. M. Hunger, S. Ernst, and J. Weitkamp, “Multinuclear solid-state n.m.r. investigation of zeolite MCM-22,” Zeolites, vol. 15, Art. no. 3, 1995, doi: 10.1016/0144-2449(94)00038-T.
    7. M. Hunger, G. Engelhardt, and J. Weitkamp, “Solid-state 23Na, 139La, 27Al and 29Si nuclear magnetic resonance spectroscopic investigations of cation location and migration in zeolites LaNaY,” Microporous materials, vol. 3, Art. no. 4, 1995, doi: 10.1016/0927-6513(94)00061-Y.
    8. M. Hunger, “In situ MAS NMR investigations of alcohol conversion on zeolites under continuous-flow conditions,” 1995.
    9. M. Hunger, “Multikern-Festkoerper-NMR-Untersuchungen zur Wechselwirkung von Gastmolekuelen mit SiOHAl-Gruppen im dehydralisierten Faujasit, Mordenit und ZSM-5-Zeolith,” 1995.
  29. 1994

    1. M. Hunger, G. Engelhardt, and J. Weitkamp, “Cation migration in zeolite LaNa-Y investigated by multinuclear solid-state NMR,” in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hölderich, Eds., in Studies in surface science and catalysis. Elsevier, 1994, pp. 725–732.
    2. T. Riemer, D. Spielbauer, M. Hunger, G. A. H. Mekhemer, and H. Knözinger, “Superacid properties of sulfated zirconia as measured by Raman spectroscopy and 1H MAS NMR,” vol. 1994, pp. 1181–1182, 1994.
    3. M. A. Makarova, A. F. Ojo, K. Karim, M. Hunger, and J. Dwyer, “FTIR study of weak hydrogen bonding of Broensted hydroxyls in zeolites and aluminophosphates,” The Journal of Physical Chemistry, vol. 98, Art. no. 14, 1994, doi: 10.1021/j100065a013.
    4. G. Engelhardt, M. Hunger, H. Koller, and J. Weitkamp, “Exploring cation siting in zeolites by solid-state NMR of quadrupolar nuclei,” in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hölderich, Eds., in Studies in surface science and catalysis. Elsevier, 1994, pp. 421–428.
    5. S. Unverricht, M. Hunger, S. Ernst, H. G. Karge, and J. Weitkamp, “Zeolite MCM-22 - synthesis, dealumination and structural characterization,” in Zeolites and related microporous materials, J. Weitkamp, H. G. Karge, H. Pfeifer, and W. Hölderich, Eds., in Studies in surface science and catalysis. Elsevier, 1994, pp. 37–44.
  30. 1993

    1. M. Hunger, M. W. Anderson, A. Ojo, and H. Pfeifer, “Study of the geometry and location of the bridging OH groups in aluminosilicate and silicoaluminophosphate type zeolites using 1H MAS NMR sideband analysis and CP/MAS NMR,” Microporous materials, vol. 1, Art. no. 1, 1993, doi: 10.1016/0927-6513(93)80005-F.
  31. 1992

    1. M. Hunger, D. Freude, D. Fenzke, and H. Pfeifer, “1H solid-state NMR studies of the geometry of Bronsted acid sites in zeolites H-ZSM-5,” Chemical physics letters, vol. 191, Art. no. 5, 1992, doi: 10.1016/0009-2614(92)85397-S.
    2. B. Zibrowius, E. Löffler, and M. Hunger, “Multinuclear MAS n.m.r. and i.r. spectroscopic study of silicon incorporation into SAPO-5, SAPO-31, and SAPO-34 molecular sieves,” Zeolites, vol. 12, Art. no. 2, 1992, doi: 10.1016/0144-2449(92)90079-5.
    3. H. Stach et al., “Mordenite acidity,” The journal of physical chemistry, vol. 96, Art. no. 21, 1992, doi: 10.1021/j100200a050.
  32. 1991

    1. M. Hunger, D. Freude, and H. Pfeifer, “H-MAS-NMR-Untersuchungen zur Wechselwirkung von Bronsted-Zentren mit Sondenmolekülen,” in Vorträge der DGMK-Fachbereichstagung C-1-Chemie, Angewandte Heterogene Katalyse, C-4-Chemie, in Tagungsbericht / DGMK, Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. DGMK, 1991, pp. 147–154.
    2. B. Zibrowius, E. Löffler, G. Finger, E. Sonntag, M. Hunger, and J. Kornatowski, “Incorporation of silicon into the framework of SAPO-5 studied by NMR and IR spectroscopy,” vol. 65, pp. 537–548, 1991.
    3. D. Fenzke, M. Hunger, and H. Pfeifer, “Determination of nuclear distances and chemical-shift anisotropy from 1H MAS NMR sideband patterns of surface OH groups,” Journal of magnetic resonance, vol. 95, Art. no. 3, 1991, doi: 10.1016/0022-2364(91)90162-M.
    4. E. Brunner, D. Freude, M. Hunger, H. Pfeifer, and B. Staudte, “Magic-angle-spinning nuclear magnetic resonance and infrared studies on modified zeolites,” in Zeolite chemistry and catalysis, P. A. Jacobs, N. I. Jaeger, L. Kubelková, and B. Wichterlov, Eds., in Studies in surface science and catalysis. Elsevier, 1991, pp. 453–459. doi: 10.1016/S0167-2991(08)61600-6.
    5. E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, and H. Pfeifer, “Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5,” Journal of catalysis, vol. 127, Art. no. 1, 1991, doi: 10.1016/0021-9517(91)90206-J.
    6. M. Hunger, D. Freude, and H. Pfeifer, “Magic-angle spinning nuclear magnetic resonance studies of water molecules adsorbed on Bronsted-and Lewis-acid sites in zeolites and amorphous silica-aluminas,” Journal of the Chemical Society. Faraday transactions, vol. 87, Art. no. 4, 1991, doi: 10.1039/FT9918700657.
    7. W. Reschetilowski, B. Meier, M. Hunger, B. Unger, and K.-P. Wendlandt, “Synthese und Charakterisierung P-haltiger ZSM-5-Zeolithe,” Angewandte Chemie, vol. 103, Art. no. 6, 1991, doi: 10.1002/ange.19911030629.
    8. H. Ernst, D. Freude, M. Hunger, and H. Pfeifer, “Multinuclear MAS NMR studies on coked zeolites H-ZSM-5,” vol. 65, pp. 397–404, 1991.
    9. B. Staudte, M. Hunger, and M. Nimz, “1H MAS n.m.r. and n.i.r. studies of aluminum-exchanged ZSM-5 zeolites,” Zeolites, vol. 11, Art. no. 8, 1991, doi: 10.1016/S0144-2449(05)80065-X.
  33. 1990

    1. M. Hunger, D. Freude, H. Pfeifer, and W. Schwieger, “MAS NMR studies of silanol groups in zeolites ZSM-5 synthesized with an ionic template,” Chemical physics letters, vol. 167, Art. no. 1, 1990, doi: 10.1016/0009-2614(90)85064-J.
    2. J. Caro et al., “NMR and IR studies of zeolite H-ZSM-5 modified with orthophosphoric acid,” Journal of catalysis, vol. 124, Art. no. 2, 1990, doi: 10.1016/0021-9517(90)90185-M.
    3. B. Hunger, J. Hoffmann, O. Heitzsch, and M. Hunger, “Temperature-programmed desorption (TPD) of ammonia from HZSM-5 zeolites,” Journal of thermal analysis, vol. 36, Art. no. 4, Jul. 1990, doi: 10.1007/BF01914061.
  34. 1989

    1. J. Caro et al., “NMR characterization of zeolite H-ZSM-5 after post-synthesis modification with H3PO4,” in Recent Advances in Zeolite Science, J. Klinowski and P. J. Barrie, Eds., in Studies in surface science and catalysis. Amsterdam: Elsevier, 1989, pp. 295–304. doi: 10.1016/S0167-2991(08)60534-0.
    2. M. Hunger, D. Freude, H. Pfeifer, D. Prager, and W. Reschetilowski, “Proton MAS NMR studies of hydroxyl groups in alkaline earth cation-exchanged zeolite Y,” Chemical physics letters, vol. 163, Art. no. 2, 1989, doi: 10.1016/0009-2614(89)80039-9.
    3. W. Reschetilowski et al., “Magic-angle-spinning nuclear magnetic resonance and adsorption studies of dealumination and realumination of zeolite ZSM-5,” Applied catalysis, vol. 56, Art. no. 1, 1989, doi: 10.1016/S0166-9834(00)80151-7.
    4. F. Roessner, K.-H. Steinberg, D. Freude, M. Hunger, and H. Pfeifer, “Nmr and Ir studies of zeolites of the erionite type,” in Zeolites as catalysts, sorbents and detergent builders, H. G. Karge and J. Weitkamp, Eds., in Studies in surface science and catalysis. Elsevier, 1989, pp. 421–427. doi: 10.1016/S0167-2991(08)60998-2.
    5. E. Brunner, H. Ernst, D. Freude, T. Fröhlich, M. Hunger, and H. Pfeifer, “MAS NMR studies on superacid sites,” P. A. Jacobs and R. A. v. Santen, Eds., in Studies in surface science and catalysis, vol. A. Elsevier, 1989, pp. 623–632. doi: 10.1016/S0167-2991(08)61760-7.
    6. N. Van-Den-Begin, L. V. C. Rees, J. Caro, M. Bülow, M. Hunger, and J. Kärger, “Diffusion of ethane in silicalite-1 by frequency response, sorption uptake and nuclear magnetic resonance techniques,” Journal of the Chemical Society. Faraday transactions. 1, Physical chemistry in condensed phases, vol. 85, Art. no. 6, 1989, doi: 10.1039/F19898501501.
    7. E. Brunner et al., “Solid-state n.m.r. and catalytic studies of mildly hydrothermally dealuminated HZSM-5,” Zeolites, vol. 9, Art. no. 4, 1989, doi: 10.1016/0144-2449(89)90072-9.
    8. J. Klinowski, H. Hamdan, A. Corma, V. Fornes, M. Hunger, and D. Freude, “1H mas NMR and IR studies of the acidic properties of realuminated zeolite Y,” Catalysis letters, vol. 3, Art. no. 3, May 1989, doi: 10.1007/BF00766402.
  35. 1988

    1. J. Völter, J. Caro, M. Bülow, B. Fahlke, J. Kärger, and M. Hunger, “Diffusion, cracking and coking on HZSM-5 of various morphologies,” Applied catalysis, vol. 42, Art. no. 1, 1988, doi: 10.1016/S0166-9834(00)80072-X.
    2. E. Brunner, D. Freude, M. Hunger, H. Pfeifer, W. Reschetilowski, and B. Unger, “MAS NMR and IR studies on ZSM-5-type boroaluminozeolites,” Chemical physics letters, vol. 148, Art. no. 2, 1988, doi: 10.1016/0009-2614(88)80304-X.
    3. D. Freude, H. Ernst, M. Hunger, H. Pfeifer, and E. Jahn, “Magic-angle-spinning NMR studies of zeolite SAPO-5,” Chemical physics letters, vol. 143, Art. no. 5, 1988, doi: 10.1016/0009-2614(88)87399-8.
    4. E. Brunner, H. Ernst, D. Freude, M. Hunger, and H. Pfeifer, “Characterization of zeolites by magic-angle spinning NMR,” in Innovation in zeolite materials science, P. J. Grobet, Ed., in Studies in surface science and catalysis. Elsevier, 1988, pp. 155–165.
    5. J. Kärger et al., “NMR investigations on molecular transport in ZSM-5 type zeolites containing structural defects,” Catalysis today, vol. 3, Art. no. 5, 1988, doi: 10.1016/0920-5861(88)87033-0.
    6. M. Hunger, D. Freude, and H. Pfeifer, “1H MAS studies of acid sites in ZSM-5 type zeolites,” Catalysis today, vol. 3, Art. no. 5, 1988, doi: https://doi.org/10.1016/0920-5861(88)87035-4.
  36. 1987

    1. D. Freude, M. Hunger, and H. Pfeifer, “Investigation of acidic properties of zeolites by MAS NMR,” vol. 152, Art. no. 1–2, 1987, doi: 10.1524/zpch.1987.152.Part_1_2.171.
    2. H. Ernst, D. Freude, M. Hunger, H. Pfeifer, and B. Seiffert, “Untersuchungen der hochauflösenden Protonenresonanz von verschiedenen Alumosilikat-Katalysatoren bei Beladung mit Ammoniak,” vol. 268, Art. no. 2, 1987, doi: 10.1515/zpch-1987-26841.
    3. U. Lohse, E. Löffler, M. Hunger, J. Stöckner, and V. Patzelová, “Hydroxyl groups of the non-framework aluminium species in dealuminated Y zeolites,” Zeolites, vol. 7, Art. no. 1, 1987, doi: 10.1016/0144-2449(87)90111-4.
    4. M. Hunger, D. Freude, T. Fröhlich, H. Pfeifer, and W. Schwieger, “1H-MAS n.m.r. studies of ZSM-5 type zeolites,” Zeolites, vol. 7, Art. no. 2, 1987, doi: 10.1016/0144-2449(87)90068-6.
    5. M. Hunger et al., “Investigation of internal silanol groups as structural defects in ZSM-5-type zeolites,” Journal of the Chemical Society. Faraday transcations. 1, Physical chemistry in condensed phases, vol. 83, Art. no. 11, 1987, doi: 10.1039/F19878303459.
    6. J. Caro et al., “Nuclear magnetic resonance self-diffusion studies of methanol-water mixtures in pentasil-type zeolites,” Journal of the Chemical Society. Faraday transcations. 1, Physical chemistry in condensed phases, vol. 83, Art. no. 6, 1987, doi: 10.1039/F19878301843.
  37. 1986

    1. J. Kutscher, H. Pfeifer, M. Hunger, and J. Hellebrand, “Investigation of imbibed water in wheat grains by pulsed 1H NMR,” vol. 34, pp. 113–122, 1986.
    2. D. Freude, M. Hunger, H. Pfeifer, and W. Schwieger, “1H MAS NMR studies on the acidity of zeolites,” Chemical physics letters, vol. 128, Art. no. 1, 1986, doi: 10.1016/0009-2614(86)80146-4.
  38. 1985

    1. H. Pfeifer, D. Freude, and M. Hunger, “Nuclear magnetic resonance studies on the acidity of zeolites and related catalysts,” Zeolites, vol. 5, Art. no. 5, 1985, doi: 10.1016/0144-2449(85)90158-7.
  39. 1984

    1. D. Freude, M. Hunger, H. Pfeifer, G. Scheler, J. Hoffmann, and W. Schmitz, “Highly resolved proton magnetic resonance spectra of hydroxyl groups in hydrogen-zeolites,” Chemical physics letters, vol. 105, Art. no. 4, 1984, doi: 10.1016/0009-2614(84)80055-X.
  40. 1983

    1. M. Hunger, D. Freude, H. Pfeifer, H. Bremer, M. Jank, and K. P. Wendlandt, “High-resolution proton magnetic resonance and catalytic studies concerning Bronsted centers of amorphous Al2O3-SiO2 solids,” Chemical physics letters, vol. 100, Art. no. 1, 1983, doi: 10.1016/0009-2614(83)87256-X.
    2. D. Freude, T. Fröhlich, M. Hunger, H. Pfeifer, and G. Scheler, “NMR studies concerning the dehydroxylation of zeolites HY,” Chemical physics letters, vol. 98, Art. no. 3, 1983, doi: 10.1016/0009-2614(83)87162-0.
  41. 1982

    1. D. Freude, M. Hunger, and H. Pfeifer, “Study of Bronsted acidity of zeolites using high-resolution proton magnetic resonance with magic-angle spinning,” Chemical physics letters, vol. 91, Art. no. 4, 1982, doi: 10.1016/0009-2614(82)80162-0.

University education:

1976 - 1981, University of Leipzig, study of physics

PhD:

1981 - 1984, University of Leipzig, Department of Physics, supervisor: Prof. Dr. D. Freude, thesis: 'Application of the rapid sample rotation for resolving the NMR spectra of acidic hydroxyl groups of aluminosilicates'

Habilitation:

1992, University of Leipzig, Department of Physics, thesis: '1H MAS NMR investigations of adsorbents'

Venia legendi:

1994, University of Stuttgart, Chemical Technology

Professorship:

1999, University of Stuttgart, Chemical Technology

Affiliations:

1984 - 1991, University of Leipzig, Department of Physics, institute of Prof. Dr. H. Pfeifer, group of Prof. Dr. D. Freude

since 1992, University of Stuttgart, Department of Chemistry, Institute of Chemical Technology

Zum Seitenanfang