Dieses Bild zeigt Deven Estes

Deven Estes

Herr Jun.-Prof.Dr.

Junior-Professor (TT W3)
Institut für Technische Chemie


Pfaffenwaldring 55
70569 Stuttgart
Raum: 1.839

  1. 2023

    1. E. J. Wimmer, S. V. Klostermann, M. Ringenberg, J. Kästner, und D. P. Estes, „Oxo-Bridged Zr Dimers as Well-defined Models of Oxygen Vacancies on ZrO 13C“, European Journal of Inorganic Chemistry, Bd. 26, Nr. 12, Art. Nr. 12, Feb. 2023, doi: 10.1002/ejic.202200709.
    2. M. Schnierle u. a., „How Solid Surfaces Control Stability and Interactions of Supported Cationic CuI(dppf) Complexes─A Solid-State NMR Study“, Inorganic Chemistry, Bd. 62, Nr. 19, Art. Nr. 19, Mai 2023, doi: 10.1021/acs.inorgchem.3c00351.
    3. B. A. Atterberry, E. Wimmer, D. P. Estes, und A. J. Rossini, „Acceleration of indirect detection 195Pt solid-state NMR experiments by sideband selective excitation or alternative indirect sampling schemes“, Journal of Magnetic Resonance, Bd. 352, S. 107457, Juli 2023, doi: 10.1016/j.jmr.2023.107457.
    4. S. E. Maier, O. Bunjaku, E. Kaya, M. Dyballa, W. Frey, und D. P. Estes, „Surface immobilized Cu-1,10-phenanthroline complexes with α-aminophosphonate groups in the 5-position as heterogenous catalysts for efficient atom-transfer radical cyclizations“, Dalton Trans., Bd. 52, Nr. 24, Art. Nr. 24, 2023, doi: 10.1039/D3DT01467C.
  2. 2021

    1. C. Rieg u. a., „Noble metal location in porous supports determined by reaction with phosphines“, Microporous and Mesoporous Materials, Bd. 310, S. 110594, Jan. 2021, doi: 10.1016/j.micromeso.2020.110594.
    2. S. Lang, M. Dyballa, Y. Traa, D. Estes, E. Klemm, und M. Hunger, „Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods~“, Chemie Ingenieur Technik, Bd. 93, Nr. 6, Art. Nr. 6, Feb. 2021, doi: 10.1002/cite.202000128.
    3. S. Maier u. a., „Immobilized Platinum Hydride Species as Catalysts for Olefin Isomerizations and Enyne Cycloisomerizations“, Organometallics, Bd. 40, Nr. 11, Art. Nr. 11, Juni 2021, doi: 10.1021/acs.organomet.1c00216.
    4. H.-H. Nguyen u. a., „Probing the Interactions of Immobilized Ruthenium Dihydride Complexes with Metal Oxide Surfaces by MAS NMR: Effects on CO2 Hydrogenation“, The Journal of Physical Chemistry C, Bd. 125, Nr. 27, Art. Nr. 27, Juli 2021, doi: 10.1021/acs.jpcc.1c02074.
    5. C. Rieg u. a., „Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface“, Chemistry – A European Journal, Bd. 27, Nr. 68, Art. Nr. 68, 2021, doi: https://doi.org/10.1002/chem.202102076.
  3. 2018

    1. S. R. Docherty, D. P. Estes, und C. Copéret, „Facile Synthesis of Unsymmetrical Trialkoxysilanols: (RO)2(R′O)SiOH“, Helv. Chim. Acta, Bd. 101, Nr. e1700298, Art. Nr. e1700298, 2018, doi: 10.1002/hlca.201700298.
  4. 2017

    1. DevenP. Estes, „Mechanistic Investigations of C–H Activations on Silica-Supported Co(ii) Sites in Catalytic Propane Dehydrogenation“, CHIMIA International Journal for Chemistry, Bd. 71, Nr. 4, Art. Nr. 4, Apr. 2017, doi: 10.2533/chimia.2017.177.
    2. D. P. Estes u. a., „Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analysis“, Journal of the American Chemical Society, Bd. 139, Nr. 48, Art. Nr. 48, Nov. 2017, doi: 10.1021/jacs.7b09934.
    3. D. P. Estes, A. K. Cook, E. Lam, L. Wong, und C. Copéret, „Understanding the Lewis Acidity of Co(II) Sites on a Silica Surface“, Inorganic Chemistry, Bd. 56, Nr. 14, Art. Nr. 14, Juli 2017, doi: 10.1021/acs.inorgchem.7b00443.
  5. 2016

    1. C. Copéret, D. P. Estes, K. Larmier, und K. Searles, „Isolated Surface Hydrides: Formation, Structure, and Reactivity“, Chemical Reviews, Bd. 116, Nr. 15, Art. Nr. 15, Juli 2016, doi: 10.1021/acs.chemrev.6b00082.
    2. D. P. Estes u. a., „C–H Activation on Co,O Sites: Isolated Surface Sites versus Molecular Analogs“, Journal of the American Chemical Society, Bd. 138, Nr. 45, Art. Nr. 45, Nov. 2016, doi: 10.1021/jacs.6b08705.
    3. M. F. Delley u. a., „X–H Bond Activation on Cr(III),O Sites (X = R, H): Key Steps in Dehydrogenation and Hydrogenation Processes“, Organometallics, Bd. 36, Nr. 1, Art. Nr. 1, Nov. 2016, doi: 10.1021/acs.organomet.6b00744.
    4. Y. Hu, A. P. Shaw, D. P. Estes, und J. R. Norton, „Transition-Metal Hydride Radical Cations“, Chemical Reviews, Bd. 116, Nr. 15, Art. Nr. 15, Feb. 2016, doi: 10.1021/acs.chemrev.5b00532.
    5. C. Copéret u. a., „Surface Organometallic and Coordination Chemistry toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities“, Chemical Reviews, Bd. 116, Nr. 2, Art. Nr. 2, Jan. 2016, doi: 10.1021/acs.chemrev.5b00373.
  6. 2015

    1. D. P. Estes und C. Copéret, „The Role of Proton Transfer in Heterogeneous Transformations of Hydrocarbons“, CHIMIA International Journal for Chemistry, Bd. 69, Nr. 6, Art. Nr. 6, Juni 2015, doi: 10.2533/chimia.2015.321.
  7. 2014

    1. D. P. Estes, D. C. Grills, und J. R. Norton, „The Reaction of Cobaloximes with Hydrogen: Products and Thermodynamics“, Journal of the American Chemical Society, Bd. 136, Nr. 50, Art. Nr. 50, Dez. 2014, doi: 10.1021/ja508200g.
    2. G. Li, D. P. Estes, J. R. Norton, S. Ruccolo, A. Sattler, und W. Sattler, „Dihydrogen Activation by Cobaloximes with Various Axial Ligands“, Inorganic Chemistry, Bd. 53, Nr. 19, Art. Nr. 19, Sep. 2014, doi: 10.1021/ic501975r.
  8. 2012

    1. G. Li, A. Han, M. E. Pulling, D. P. Estes, und J. R. Norton, „Evidence for Formation of a Co–H Bond from (H2O)2Co(dmgBF2)2 under H2: Application to Radical Cyclizations“, Journal of the American Chemical Society, Bd. 134, Nr. 36, Art. Nr. 36, Aug. 2012, doi: 10.1021/ja306037w.
    2. D. P. Estes, J. R. Norton, S. Jockusch, und W. Sattler, „Mechanisms by which Alkynes React with CpCr(CO)3H. Application to Radical Cyclization“, Journal of the American Chemical Society, Bd. 134, Nr. 37, Art. Nr. 37, Aug. 2012, doi: 10.1021/ja306120n.

Jun.-Prof. Dr. Deven Estes is an expert in surface chemistry on metal oxides, specifically in the selective synthesis of well-defined model catalysts on metal oxide surfaces through the techniques of Surface Organometallic Chemistry (SOMC) and Molecular Heterogeneous Catalysis (MHC). Both of these techniques use various synthetic methods to immobilize organometallic complexes onto metal oxides via covalent bonds.

Using these methods, we can make model active sites of heterogeneous catalysts and test their reactivity to increase our mechanistic understanding of these reactions. Specifically, we are interested in better understanding the interactions of metal hydrides and metal oxide surfaces, which is thought to be the origin of many Strong Metal-Support Interactions (SMSIs). We are currently involved in several projects aimed at better understanding SMSIs.

  1. Understanding the dynamics of strong hydride donors on Lewis acidic metal oxides for CO2 hydrogenation
  2. Mechanisms of Hydrogen Spillover on reducible metal oxides (including MoO3, Bi2O3, CeO2, ZnO, and ZrO2) and their relevance to catalytic reactions
  3. Oxidative addition of surface OH groups to metal (0) complexes


In addition, we are also investigating immobilization as a method for application of homogeneous catalytic processes to flow chemistry and reusability. This includes the use of MHC and SOMC to immobilize catalysts for organic reactions for the fine chemical industry including:

  1. Atom Transfer Radical Cyclization and Addition (ATRC/ATRA) Reactions
  2. Enyne cycloisomerization Reactions
  3. Hydrosilylation Reactions
  4. Biomass hydrodeoxygenation
Zum Seitenanfang