Dieses Bild zeigt Michael Dyballa

Michael Dyballa

Herr Dr.

Arbeitsgruppenleiter
Institut für Technische Chemie

Kontakt

Pfaffenwaldring 55
70569 Stuttgart
Deutschland
Raum: 0.722

Dr. Michael Dyballa:
  1. 2022

    1. Z. Li, D. Dittmann, C. Rieg, M. Benz, und M. Dyballa, „Hydronium ion and water complexes vs. methanol on solid catalyst surfaces: how confinement influences stability and reactivity“, Catal. Sci. Technol., Bd. 12, Nr. 16, Art. Nr. 16, 2022, doi: 10.1039/D2CY00829G.
    2. C. Rieg u. a., „Introducing a Novel Method for Probing Accessibility, Local Environment, and Spatial Distribution of Oxidative Sites on Solid Catalysts Using Trimethylphosphine“, The Journal of Physical Chemistry C, Bd. 126, Nr. 31, Art. Nr. 31, Aug. 2022, doi: 10.1021/acs.jpcc.2c04114.
    3. Z. Li, D. Dittmann, C. Rieg, M. Benz, und M. Dyballa, „Confinement and surface sites control methanol adsorbate stability on MFI zeolites, SBA-15, and a silica-supported heteropoly acid“, Catal. Sci. Technol., Bd. 12, Nr. 7, Art. Nr. 7, 2022, doi: 10.1039/D1CY02330F.
    4. K. Sato, A. Yamamoto, M. Dyballa, und M. Hunger, „Molecular adsorption by biochar produced by eco-friendly low-temperature carbonization investigated using graphene structural reconfigurations“, Green Chemistry Letters and Reviews, Bd. 15, Nr. 1, Art. Nr. 1, 2022, doi: 10.1080/17518253.2022.2048090.
  2. 2021

    1. A.-K. Beurer u. a., „Efficient and Spatially Controlled Functionalization of SBA-15 and Initial Results in Asymmetric Rh-Catalyzed 1,2-Additions under Confinement“, ChemCatChem, Bd. 13, Nr. 10, Art. Nr. 10, 2021, doi: https://doi.org/10.1002/cctc.202100229.
    2. H.-H. Nguyen u. a., „Probing the Interactions of Immobilized Ruthenium Dihydride Complexes with Metal Oxide Surfaces by MAS NMR: Effects on CO2 Hydrogenation“, The Journal of Physical Chemistry C, Bd. 125, Nr. 27, Art. Nr. 27, Juli 2021, doi: 10.1021/acs.jpcc.1c02074.
    3. C. Rieg u. a., „Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface“, Chemistry – A European Journal, Bd. 27, Nr. 68, Art. Nr. 68, 2021, doi: https://doi.org/10.1002/chem.202102076.
    4. K. Sato, T. Orihara, M. Dyballa, und M. Hunger, „Instantaneous Ex Situ Mineral Carbonation Relevant to Alkali Metals in Clay Nanoparticles“, The Journal of Physical Chemistry C, Bd. 125, Nr. 8, Art. Nr. 8, Feb. 2021, doi: 10.1021/acs.jpcc.0c11521.
    5. C. Rieg u. a., „Noble metal location in porous supports determined by reaction with phosphines“, Microporous and Mesoporous Materials, Bd. 310, S. 110594, Jan. 2021, doi: 10.1016/j.micromeso.2020.110594.
    6. J. Huang, M. Dyballa, D. Freude, Y. Jiang, und W. Wang, „The Journal of Physical Chemistry C Virtual Special Issue on Advanced Characterization by Solid-State NMR and In Situ Technology and in Recognition of Michael Hunger’s 65th Birthday“, The Journal of Physical Chemistry C, Bd. 125, Nr. 38, Art. Nr. 38, 2021, doi: 10.1021/acs.jpcc.1c07355.
    7. S. Maier u. a., „Immobilized Platinum Hydride Species as Catalysts for Olefin Isomerizations and Enyne Cycloisomerizations“, Organometallics, Bd. 40, Nr. 11, Art. Nr. 11, Juni 2021, doi: 10.1021/acs.organomet.1c00216.
    8. Z. Li u. a., „The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts“, Mater. Chem. Front., Bd. 5, Nr. 11, Art. Nr. 11, 2021, doi: 10.1039/D1QM00282A.
    9. S. Lang, M. Dyballa, Y. Traa, D. Estes, E. Klemm, und M. Hunger, „Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods~“, Chemie Ingenieur Technik, Bd. 93, Nr. 6, Art. Nr. 6, Feb. 2021, doi: 10.1002/cite.202000128.
    10. R. Himmelmann, E. Klemm, und M. Dyballa, „Improved ethanol dehydration catalysis by the superior acid properties of Cs-impregnated silicotungstic acid supported on silica“, Catal. Sci. Technol., Bd. 11, Nr. 9, Art. Nr. 9, 2021, doi: 10.1039/D1CY00143D.
    11. C. Rieg u. a., „A Method for the Selective Quantification of Brønsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites“, The Journal of Physical Chemistry C, Bd. 125, Nr. 1, Art. Nr. 1, 2021, doi: 10.1021/acs.jpcc.0c09384.
    12. L. Yang u. a., „Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion“, Nature Communications, Bd. 12, Nr. 1, Art. Nr. 1, Aug. 2021, doi: 10.1038/s41467-021-24403-2.
  3. 2020

    1. Z. Li u. a., „Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials“, Adsorption, Okt. 2020, doi: 10.1007/s10450-020-00275-8.
    2. S. Chen u. a., „Raising the COx Methanation Activity of a Ru/γ-Al2O3 Catalyst by Activated Modification of Metal–Support Interactions“, Angewandte Chemie International Edition, Bd. 59, Nr. 50, Art. Nr. 50, 2020, doi: https://doi.org/10.1002/anie.202007228.
    3. Kvande u. a., „Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol“, Catalysts, Bd. 10, Nr. 2, Art. Nr. 2, Feb. 2020, doi: 10.3390/catal10020191.
    4. M. Dyballa u. a., „Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports“, Microporous and Mesoporous Materials, S. 109778, Okt. 2020, doi: 10.1016/j.micromeso.2019.109778.
  4. 2019

    1. E. Borfecchia u. a., „Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS“, Catalysis Today, Bd. 333, S. 17--27, Aug. 2019, doi: 10.1016/j.cattod.2018.07.028.
    2. R. Y. Brogaard u. a., „Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site“, ACS Catalysis, Bd. 9, Nr. 6, Art. Nr. 6, Mai 2019, doi: 10.1021/acscatal.9b00721.
    3. F. Ziegler u. a., „Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization“, Journal of the American Chemical Society, Bd. 141, Nr. 48, Art. Nr. 48, Nov. 2019, doi: 10.1021/jacs.9b08776.
    4. M. Dyballa u. a., „Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol“, ChemCatChem, Bd. 11, Nr. 20, Art. Nr. 20, Sep. 2019, doi: 10.1002/cctc.201901315.
    5. D. K. Pappas u. a., „Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy“, Topics in Catalysis, Bd. 62, Nr. 7, Art. Nr. 7, Aug. 2019, doi: 10.1007/s11244-019-01160-7.
    6. K. A. Lomachenko u. a., „The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study“, Catalysis Today, Bd. 336, S. 99--108, Okt. 2019, doi: 10.1016/j.cattod.2019.01.040.
    7. M. Dyballa u. a., „On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion“, ACS Catalysis, Bd. 9, Nr. 1, Art. Nr. 1, Dez. 2019, doi: 10.1021/acscatal.8b04437.
  5. 2018

    1. J. Holzinger u. a., „Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study“, The Journal of Physical Chemistry C, Bd. 123, Nr. 13, Art. Nr. 13, Nov. 2018, doi: 10.1021/acs.jpcc.8b06891.
    2. D. K. Pappas u. a., „Understanding and Optimizing the Performance of Cu-FER for The Direct CH4 to CH3OH Conversion“, ChemCatChem, Bd. 11, Nr. 1, Art. Nr. 1, Dez. 2018, doi: 10.1002/cctc.201801542.
    3. M. Dyballa, U. Obenaus, M. Blum, und W. Dai, „Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance“, Catal. Sci. Technol., Bd. 8, Nr. 17, Art. Nr. 17, 2018, doi: 10.1039/C8CY01032C.
    4. M. Dyballa u. a., „Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane“, Microporous and Mesoporous Materials, Bd. 265, S. 112--122, Juli 2018, doi: 10.1016/j.micromeso.2018.02.004.
    5. D. K. Pappas u. a., „The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment“, Journal of the American Chemical Society, Bd. 140, Nr. 45, Art. Nr. 45, Okt. 2018, doi: 10.1021/jacs.8b08071.
  6. 2017

    1. D. K. Pappas u. a., „Methane to Methanol: Structure–Activity Relationships for Cu-CHA“, Journal of the American Chemical Society, Bd. 139, Nr. 42, Art. Nr. 42, Okt. 2017, doi: 10.1021/jacs.7b06472.
    2. D. Rojo-Gama u. a., „A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5“, ACS Catalysis, Bd. 7, Nr. 12, Art. Nr. 12, Nov. 2017, doi: 10.1021/acscatal.7b02193.
    3. W. Dai u. a., „Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density“, Catal. Sci. Technol., Bd. 7, Nr. 3, Art. Nr. 3, 2017, doi: 10.1039/C6CY02564A.
  7. 2016

    1. U. Obenaus, F. Neher, M. Scheibe, M. Dyballa, S. Lang, und M. Hunger, „Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis“, The Journal of Physical Chemistry C, Bd. 120, Nr. 4, Art. Nr. 4, Jan. 2016, doi: 10.1021/acs.jpcc.5b11367.
    2. M. Dyballa u. a., „Parameters influencing the selectivity to propene in the MTO conversion    on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and    ZSM-22“, APPLIED CATALYSIS A-GENERAL, Bd. 510, S. 233–243, Jan. 2016, doi: 10.1016/j.apcata.2015.11.017.
    3. M. Dyballa u. a., „Post-synthetic improvement of H-ZSM-22 zeolites for the    methanol-to-olefin conversion“, MICROPOROUS AND MESOPOROUS MATERIALS, Bd. 233, S. 26–30, Okt. 2016, doi: 10.1016/j.micromeso.2016.06.044.
  8. 2015

    1. G. Näfe u. a., „Deactivation behavior of alkali-metal zeolites in the dehydration of    lactic acid to acrylic acid“, JOURNAL OF CATALYSIS, Bd. 329, S. 413–424, Sep. 2015, doi: 10.1016/j.jcat.2015.05.017.
    2. W. Dai, M. Dyballa, G. Wu, L. Li, N. Guan, und M. Hunger, „Intermediates and Dominating Reaction Mechanism During the Early Period    of the Methanol-to-Olefin Conversion on SAPO-41“, JOURNAL OF PHYSICAL CHEMISTRY C, Bd. 119, Nr. 5, Art. Nr. 5, Feb. 2015, doi: 10.1021/jp5118757.
    3. U. Obenaus, M. Dyballa, S. Lang, M. Scheibe, und M. Hunger, „Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy“, The Journal of Physical Chemistry C, Bd. 119, Nr. 27, Art. Nr. 27, Juni 2015, doi: 10.1021/acs.jpcc.5b03149.
    4. W. Dai u. a., „Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from    NMR Spectroscopy and DFT Calculations“, ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, Bd. 54, Nr. 30, Art. Nr. 30, Juli 2015, doi: 10.1002/anie.201502748.
    5. W. Dai u. a., „Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34“, ACS Catalysis, Bd. 5, Nr. 1, Art. Nr. 1, Dez. 2015, doi: 10.1021/cs5015749.
    6. M. Dyballa u. a., „Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange“, Microporous and Mesoporous Materials, Bd. 212, S. 110--116, Aug. 2015, doi: 10.1016/j.micromeso.2015.03.030.
  9. 2014

    1. X. Sun, M. Dyballa, J. Yan, L. Li, N. Guan, und M. Hunger, „Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2“, Bd. 94, S. 34–40, 2014, doi: 10.1016/j.cplett.2014.01.014.
  10. 2013

    1. M. Dyballa, E. Klemm, J. Weitkamp, und M. Hunger, „Effect of phosphate modification on the Bronsted acidity and methanol-to-olefin conversion activity of Zeolite ZSM-5“, Bd. 85, Nr. 11, Art. Nr. 11, 2013, doi: 10.1002/cite.201300066.
    2. H. Henning, M. Dyballa, M. Scheibe, E. Klemm, und M. Hunger, „In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y“, Chemical physics letters, Bd. 555, S. 258–262, 2013, doi: 10.1016/j.cplett.2012.10.068.
    3. D. Santi, S. Rabl, V. Calemma, M. Dyballa, M. Hunger, und J. Weitkamp, „Effect of noble metals on the strength of Bronsted acid sites in bifunctional zeolites“, Bd. 5, Nr. 6, Art. Nr. 6, 2013, doi: 10.1002/cctc.201200675.
  11. 2012

    1. M. Dyballa, M. Scheibe, M. Hunger, W. Dai, L. Li, und N. Guan, „PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34 upon using as MTO catalyst“, gehalten auf der 24. Deutsche Zeolith-Tagung, Magdeburg, Germany, 2012.
  12. 2010

    1. C. Lieder, S. Opelt, M. Dyballa, H. Henning, E. Klemm, und M. Hunger, „Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy“, The journal of physical chemistry. C, Nanomaterials and interfaces, Bd. 114, Nr. 39, Art. Nr. 39, 2010, doi: 10.1021/jp105700b.
since 2018   
Scientist in the MAS NMR spectroscopy group at the Institute of Chemical Technology, Stuttgart.
2016 - 2018
PostDoc at the University of Oslo (with Prof. Stian Svelle) and at SINTEF, Oslo (with Dr. Bjørnar Arstad).
2012 - 2015 
PhD in the MAS NMR spectroscopy group at the Institute of Chemical Technology, Stuttgart (with Apl. Prof. Michael Hunger). Title: "Die Entwicklung neuer Zeolithkatalysatoren für die Methanol-zu-Olefin-Umsetzung (The development of novel zeolite catalysts for the methanol-to-olefin conversion)".
2011

Diploma Thesis in the Bioinformatics group at the Institute of Technical Biochemistry, Stuttgart (with Apl. Prof. Jürgen Pleiss). Title: "Quantifizierung der Bindung von Peptiden an ZnO durch Fluoreszenzmessungen (Quantification of peptide binding to ZnO via fluorescence measurements)".

2006 - 2011  Study of Chemistry at the University of Stuttgart.
Zum Seitenanfang