Dieses Bild zeigt  Michael Dyballa

Herr Dr.

Michael Dyballa

Arbeitsgruppenleiter
Institut für Technische Chemie

Kontakt

+49 711 685-64258

Pfaffenwaldring 55
70569 Stuttgart
Deutschland
Raum: 0.728

Dr. Michael Dyballa:
  1. 2021

    1. C. Rieg et al., “Noble metal location in porous supports determined by reaction with phosphines,” Microporous and Mesoporous Materials, vol. 310, p. 110594, 2021, doi: 10.1016/j.micromeso.2020.110594.
  2. 2020

    1. Kvande et al., “Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol,” Catalysts, vol. 10, no. 2, Art. no. 2, 2020, doi: 10.3390/catal10020191.
  3. 2019

    1. E. Borfecchia et al., “Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS,” Catalysis Today, vol. 333, pp. 17--27, 2019, doi: 10.1016/j.cattod.2018.07.028.
    2. M. Dyballa et al., “Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports,” Microporous and Mesoporous Materials, p. 109778, 2019, doi: 10.1016/j.micromeso.2019.109778.
    3. R. Y. Brogaard et al., “Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site,” ACS Catalysis, vol. 9, no. 6, Art. no. 6, 2019, doi: 10.1021/acscatal.9b00721.
    4. F. Ziegler et al., “Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization,” Journal of the American Chemical Society, vol. 141, no. 48, Art. no. 48, 2019, doi: 10.1021/jacs.9b08776.
    5. M. Dyballa et al., “Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol,” ChemCatChem, vol. 11, no. 20, Art. no. 20, 2019, doi: 10.1002/cctc.201901315.
    6. D. K. Pappas et al., “Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy,” Topics in Catalysis, vol. 62, no. 7, Art. no. 7, 2019, doi: 10.1007/s11244-019-01160-7.
    7. K. A. Lomachenko et al., “The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study,” Catalysis Today, vol. 336, pp. 99--108, 2019, doi: 10.1016/j.cattod.2019.01.040.
    8. M. Dyballa et al., “On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion,” ACS Catalysis, vol. 9, no. 1, Art. no. 1, 2019, doi: 10.1021/acscatal.8b04437.
  4. 2018

    1. J. Holzinger et al., “Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study,” The Journal of Physical Chemistry C, vol. 123, no. 13, Art. no. 13, 2018, doi: 10.1021/acs.jpcc.8b06891.
    2. D. K. Pappas et al., “Understanding and Optimizing the Performance of Cu-FER for The Direct CH4 to CH3OH Conversion,” ChemCatChem, vol. 11, no. 1, Art. no. 1, 2018, doi: 10.1002/cctc.201801542.
    3. M. Dyballa, U. Obenaus, M. Blum, and W. Dai, “Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance,” Catal. Sci. Technol., vol. 8, no. 17, Art. no. 17, 2018, doi: 10.1039/C8CY01032C.
    4. M. Dyballa et al., “Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane,” Microporous and Mesoporous Materials, vol. 265, pp. 112--122, 2018, doi: 10.1016/j.micromeso.2018.02.004.
    5. D. K. Pappas et al., “The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment,” Journal of the American Chemical Society, vol. 140, no. 45, Art. no. 45, 2018, doi: 10.1021/jacs.8b08071.
  5. 2017

    1. D. K. Pappas et al., “Methane to Methanol: Structure–Activity Relationships for Cu-CHA,” Journal of the American Chemical Society, vol. 139, no. 42, Art. no. 42, 2017, doi: 10.1021/jacs.7b06472.
    2. D. Rojo-Gama et al., “A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5,” ACS Catalysis, vol. 7, no. 12, Art. no. 12, 2017, doi: 10.1021/acscatal.7b02193.
    3. W. Dai et al., “Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density,” Catal. Sci. Technol., vol. 7, no. 3, Art. no. 3, 2017, doi: 10.1039/C6CY02564A.
  6. 2016

    1. U. Obenaus, F. Neher, M. Scheibe, M. Dyballa, S. Lang, and M. Hunger, “Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis,” The Journal of Physical Chemistry C, vol. 120, no. 4, Art. no. 4, 2016, doi: 10.1021/acs.jpcc.5b11367.
    2. M. Dyballa et al., “Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22,” Applied Catalysis A: General, vol. 510, pp. 233--243, 2016, doi: 10.1016/j.apcata.2015.11.017.
    3. M. Dyballa et al., “Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion,” Microporous and Mesoporous Materials, vol. 233, pp. 26--30, 2016, doi: 10.1016/j.micromeso.2016.06.044.
  7. 2015

    1. G. Näfe et al., “Deactivation behavior of alkali-metal zeolites in the dehydration of lactic acid to acrylic acid,” Journal of Catalysis, vol. 329, pp. 413--424, 2015, doi: 10.1016/j.jcat.2015.05.017.
    2. W. Dai, M. Dyballa, G. Wu, L. Li, N. Guan, and M. Hunger, “Intermediates and Dominating Reaction Mechanism During the Early Period    of the Methanol-to-Olefin Conversion on SAPO-41,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, no. 5, Art. no. 5, 2015, doi: 10.1021/jp5118757.
    3. U. Obenaus, M. Dyballa, S. Lang, M. Scheibe, and M. Hunger, “Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy,” The Journal of Physical Chemistry C, vol. 119, no. 27, Art. no. 27, 2015, doi: 10.1021/acs.jpcc.5b03149.
    4. W. Dai et al., “Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from    NMR Spectroscopy and DFT Calculations,” ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol. 54, no. 30, Art. no. 30, 2015, doi: 10.1002/anie.201502748.
    5. W. Dai et al., “Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34,” ACS Catalysis, vol. 5, no. 1, Art. no. 1, 2015, doi: 10.1021/cs5015749.
    6. M. Dyballa et al., “Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange,” Microporous and Mesoporous Materials, vol. 212, pp. 110--116, 2015, doi: 10.1016/j.micromeso.2015.03.030.
  8. 2014

    1. X. Sun, M. Dyballa, J. Yan, L. Li, N. Guan, and M. Hunger, “Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2,” vol. 94, pp. 34–40, 2014, doi: 10.1016/j.cplett.2014.01.014.
  9. 2013

    1. M. Dyballa, E. Klemm, J. Weitkamp, and M. Hunger, “Effect of phosphate modification on the Bronsted acidity and methanol-to-olefin conversion activity of Zeolite ZSM-5,” vol. 85, no. 11, Art. no. 11, 2013, doi: 10.1002/cite.201300066.
    2. H. Henning, M. Dyballa, M. Scheibe, E. Klemm, and M. Hunger, “In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y,” Chemical physics letters, vol. 555, pp. 258–262, 2013, doi: 10.1016/j.cplett.2012.10.068.
    3. D. Santi, S. Rabl, V. Calemma, M. Dyballa, M. Hunger, and J. Weitkamp, “Effect of noble metals on the strength of Bronsted acid sites in bifunctional zeolites,” vol. 5, no. 6, Art. no. 6, 2013, doi: 10.1002/cctc.201200675.
  10. 2012

    1. M. Dyballa, M. Scheibe, M. Hunger, W. Dai, L. Li, and N. Guan, “PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34 upon using as MTO catalyst,” presented at the 24. Deutsche Zeolith-Tagung, Magdeburg, Germany, 2012.
  11. 2010

    1. C. Lieder, S. Opelt, M. Dyballa, H. Henning, E. Klemm, and M. Hunger, “Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 114, no. 39, Art. no. 39, 2010, doi: 10.1021/jp105700b.
since 2018   
Scientist in the MAS NMR spectroscopy group at the Institute of Chemical Technology, Stuttgart.
2016 - 2018
PostDoc at the University of Oslo (with Prof. Stian Svelle) and at SINTEF, Oslo (with Dr. Bjørnar Arstad).
2012 - 2015 
PhD in the MAS NMR spectroscopy group at the Institute of Chemical Technology, Stuttgart (with Apl. Prof. Michael Hunger). Title: "Die Entwicklung neuer Zeolithkatalysatoren für die Methanol-zu-Olefin-Umsetzung (The development of novel zeolite catalysts for the methanol-to-olefin conversion)".
2011

Diploma Thesis in the Bioinformatics group at the Institute of Technical Biochemistry, Stuttgart (with Apl. Prof. Jürgen Pleiss). Title: "Quantifizierung der Bindung von Peptiden an ZnO durch Fluoreszenzmessungen (Quantification of peptide binding to ZnO via fluorescence measurements)".

2006 - 2011  Study of Chemistry at the University of Stuttgart.
Zum Seitenanfang