Dieses Bild zeigt Michael Dyballa

Michael Dyballa

Herr PD Dr.

Arbeitsgruppenleiter
Institut für Technische Chemie

Kontakt

Pfaffenwaldring 55
70569 Stuttgart
Deutschland
Raum: 0.722

Dr. Michael Dyballa:
  1. 2025

    1. M. Dyballa, Z. Li, and D. Dittmann, “Boron vs. aluminum in ZSM-5 zeolites: Solid-state NMR, acidity, and C1/C2 reactant conversion,” Microporous and Mesoporous Materials, vol. 381, p. 113353, Jan. 2025, doi: 10.1016/j.micromeso.2024.113353.
    2. D. Dittmann, A. Ileri, D. Strassheim, and M. Dyballa, “Higher BTEX aromatic yield from ethanol over desilicated H,Zn-AlZSM-5 catalysts,” Catal. Sci. Technol., vol. 15, Art. no. 4, 2025, doi: 10.1039/D4CY01062K.
  2. 2024

    1. S. Krake, C. Conzelmann, S. Heuer, M. Dyballa, S. Zibek, and T. Hahn, “Production of chitosan from Aspergillus niger and quantitative evaluation of the process using adapted analytical tools,” Biotechnology and Bioprocess Engineering, Jul. 2024, doi: 10.1007/s12257-024-00124-3.
    2. E. Kaya, D. Dittmann, M. Schmidt, and M. Dyballa, “Cu(dppf) complexes can be synthesized from Cu-exchanged solids and enable a quantification of the Cu-accessibility by 31P MAS NMR spectroscopy,” Dalton Trans., vol. 53, Art. no. 15, 2024, doi: 10.1039/D4DT00147H.
    3. J. H. Matthies, D. Dittmann, M. Dyballa, U. Tuttlies, and U. Nieken, “Investigation of Aging Mechanism of Pt‐ZSM‐5 Catalysts for Non‐Oxidative Propane Dehydrogenation,” Chemie Ingenieur Technik, vol. 96, Art. no. 6, May 2024, doi: 10.1002/cite.202300167.
    4. S. B. Wachsmann et al., “Chitin/Chitosan Biocomposite Foams with Chitins from Different Organisms for Sound Absorption,” ACS Sustainable Chemistry & Engineering, vol. 12, Art. no. 32, Jul. 2024, doi: 10.1021/acssuschemeng.4c00044.
    5. H.-H. Nguyen, M. Dyballa, and D. P. Estes, “Using Support Effects to Increase the Productivity of Immobilized Ruthenium Hydride Catalysts for the Hydrogenation of CO2,” Inorganic Chemistry, vol. 63, Art. no. 50, Dec. 2024, doi: 10.1021/acs.inorgchem.4c03540.
    6. S. E. Maier et al., “Comparison of the Catalytic Activity of Surface-Immobilized Copper Complexes with Phosphonate Anchoring Groups for Atom Transfer Radical Cyclizations and Additions,” Organometallics, vol. 43, Art. no. 3, Feb. 2024, doi: 10.1021/acs.organomet.3c00377.
  3. 2023

    1. D. Dittmann, E. Kaya, and M. Dyballa, “Desilicated ZSM-5 Catalysts: Properties and Ethanol to Aromatics (ETA) Performance,” ChemCatChem, Sep. 2023, doi: 10.1002/cctc.202300716.
    2. M. Schnierle et al., “How Solid Surfaces Control Stability and Interactions of Supported Cationic CuI(dppf) Complexes─A Solid-State NMR Study,” Inorganic Chemistry, vol. 62, Art. no. 19, May 2023, doi: 10.1021/acs.inorgchem.3c00351.
    3. J. Kappler et al., “Sulfur-Composites Derived from Poly(acrylonitrile) and Poly(vinylacetylene) – A Comparative Study on the Role of Pyridinic and Thioamidic Nitrogen,” Batteries & Supercaps, Jan. 2023, doi: 10.1002/batt.202200522.
    4. C. Rieg et al., “Determination of accessibility and spatial distribution of chiral Rh diene complexes immobilized on SBA-15 via phosphine-based solid-state NMR probe molecules,” Catal. Sci. Technol., vol. 13, Art. no. 2, 2023, doi: 10.1039/D2CY01578A.
    5. S. E. Maier, O. Bunjaku, E. Kaya, M. Dyballa, W. Frey, and D. P. Estes, “Surface immobilized Cu-1,10-phenanthroline complexes with α-aminophosphonate groups in the 5-position as heterogenous catalysts for efficient atom-transfer radical cyclizations,” Dalton Trans., vol. 52, Art. no. 24, 2023, doi: 10.1039/D3DT01467C.
    6. D. Dittmann, E. Kaya, D. Strassheim, and M. Dyballa, “Influence of ZSM-5 Crystal Size on Methanol-to-Olefin (MTO) vs. Ethanol-to-Aromatics (ETA) Conversion,” Molecules, vol. 28, Art. no. 24, 2023, doi: 10.3390/molecules28248046.
    7. D. Dittmann, C. Rieg, Z. Li, E. Kaya, and M. Dyballa, “Better Performance in C2-Conversion to Aromatics by Optimized Feed and Catalysts,” Energy & Fuels 2023, 37, 6, vol. 37, Art. no. 6, Mar. 2023, doi: 10.1021/acs.energyfuels.3c00356.
    8. S. Peters et al., “Accessibility of Reactants and Neighborhood of Mo Species during Methane Aromatization Uncovered by Operando NAP-XPS and MAS NMR,” ACS Catalysis, vol. 13, Art. no. 19, Sep. 2023, doi: 10.1021/acscatal.3c02385.
    9. T. Hahn et al., “Comprehensive characterization and evaluation of the process chain and products from Euphausia superba exocuticles to chitosan,” Journal of Applied Polymer Science, vol. 141, Art. no. 2, Oct. 2023, doi: 10.1002/app.54789.
    10. M. Dyballa, “Solid-State NMR Probe Molecules for Catalysts and Adsorbents: Concepts, Quantification, Accessibility, and Spatial Distribution,” Energy & Fuels, vol. 37, Art. no. 23, Nov. 2023, doi: 10.1021/acs.energyfuels.3c03815.
    11. D. Dittmann, J. Schröder, E. Kaya, J. Mosrati, A. M. Abdel-Mageed, and M. Dyballa, “„Quantifiable Surface Methoxy Groups on Zr(OH) Groups of UiO-66 Metal–Organic Framework: Generation from Methanol-13C and Reactivity“,” The Journal of Physical Chemistry C, vol. 127, Art. no. 38, Sep. 2023, doi: 10.1021/acs.jpcc.3c04544.
    12. J. H. Matthies, D. Dittmann, M. Dyballa, and U. Nieken, “Slow aging mechanisms in non-oxidative reaction conditions e.g. dehydrogenation on Pt-ZSM5 catalysts,” Chemical and process engineering, Art. no. 3, Sep. 2023, doi: 10.24425/cpe.2023.146734.
  4. 2022

    1. Z. Li, D. Dittmann, C. Rieg, M. Benz, and M. Dyballa, “Hydronium ion and water complexes vs. methanol on solid catalyst surfaces: how confinement influences stability and reactivity,” Catal. Sci. Technol., vol. 12, Art. no. 16, 2022, doi: 10.1039/D2CY00829G.
    2. C. Rieg et al., “Introducing a Novel Method for Probing Accessibility, Local Environment, and Spatial Distribution of Oxidative Sites on Solid Catalysts Using Trimethylphosphine,” The Journal of Physical Chemistry C, vol. 126, Art. no. 31, Aug. 2022, doi: 10.1021/acs.jpcc.2c04114.
    3. K. Sato, A. Yamamoto, M. Dyballa, and M. Hunger, “Molecular adsorption by biochar produced by eco-friendly low-temperature carbonization investigated using graphene structural reconfigurations,” Green Chemistry Letters and Reviews, vol. 15, Art. no. 1, 2022, doi: 10.1080/17518253.2022.2048090.
    4. Z. Li, D. Dittmann, C. Rieg, M. Benz, and M. Dyballa, “Confinement and surface sites control methanol adsorbate stability on MFI zeolites, SBA-15, and a silica-supported heteropoly acid,” Catal. Sci. Technol., vol. 12, Art. no. 7, 2022, doi: 10.1039/D1CY02330F.
  5. 2021

    1. C. Rieg et al., “A Method for the Selective Quantification of Brønsted Acid Sites on External Surfaces and in Mesopores of Hierarchical Zeolites,” The Journal of Physical Chemistry C, vol. 125, Art. no. 1, 2021, doi: 10.1021/acs.jpcc.0c09384.
    2. J. Huang, M. Dyballa, D. Freude, Y. Jiang, and W. Wang, “The Journal of Physical Chemistry C Virtual Special Issue on Advanced Characterization by Solid-State NMR and In Situ Technology and in Recognition of Michael Hunger’s 65th Birthday,” The Journal of Physical Chemistry C, vol. 125, Art. no. 38, 2021, doi: 10.1021/acs.jpcc.1c07355.
    3. K. Sato, T. Orihara, M. Dyballa, and M. Hunger, “Instantaneous Ex Situ Mineral Carbonation Relevant to Alkali Metals in Clay Nanoparticles,” The Journal of Physical Chemistry C, vol. 125, Art. no. 8, Feb. 2021, doi: 10.1021/acs.jpcc.0c11521.
    4. R. Himmelmann, E. Klemm, and M. Dyballa, “Improved ethanol dehydration catalysis by the superior acid properties of Cs-impregnated silicotungstic acid supported on silica,” Catal. Sci. Technol., vol. 11, Art. no. 9, 2021, doi: 10.1039/D1CY00143D.
    5. C. Rieg et al., “Noble metal location in porous supports determined by reaction with phosphines,” Microporous and Mesoporous Materials, vol. 310, p. 110594, Jan. 2021, doi: 10.1016/j.micromeso.2020.110594.
    6. S. Lang, M. Dyballa, Y. Traa, D. Estes, E. Klemm, and M. Hunger, “Direct Proof of Volatile and Adsorbed Hydrocarbons on Solid Catalysts by Complementary NMR Methods~,” Chemie Ingenieur Technik, vol. 93, Art. no. 6, Feb. 2021, doi: 10.1002/cite.202000128.
    7. S. Maier et al., “Immobilized Platinum Hydride Species as Catalysts for Olefin Isomerizations and Enyne Cycloisomerizations,” Organometallics, vol. 40, Art. no. 11, Jun. 2021, doi: 10.1021/acs.organomet.1c00216.
    8. A.-K. Beurer et al., “Efficient and Spatially Controlled Functionalization of SBA-15 and Initial Results in Asymmetric Rh-Catalyzed 1,2-Additions under Confinement,” ChemCatChem, vol. 13, Art. no. 10, 2021, doi: https://doi.org/10.1002/cctc.202100229.
    9. Z. Li et al., “The alumination mechanism of porous silica materials and properties of derived ion exchangers and acid catalysts,” Mater. Chem. Front., vol. 5, Art. no. 11, 2021, doi: 10.1039/D1QM00282A.
    10. H.-H. Nguyen et al., “Probing the Interactions of Immobilized Ruthenium Dihydride Complexes with Metal Oxide Surfaces by MAS NMR: Effects on CO2 Hydrogenation,” The Journal of Physical Chemistry C, vol. 125, Art. no. 27, Jul. 2021, doi: 10.1021/acs.jpcc.1c02074.
    11. C. Rieg et al., “Quantitative Distinction between Noble Metals Located in Mesopores from Those on the External Surface,” Chemistry – A European Journal, vol. 27, Art. no. 68, 2021, doi: https://doi.org/10.1002/chem.202102076.
    12. L. Yang et al., “Stabilizing the framework of SAPO-34 zeolite toward long-term methanol-to-olefins conversion,” Nature Communications, vol. 12, Art. no. 1, Aug. 2021, doi: 10.1038/s41467-021-24403-2.
  6. 2020

    1. M. Dyballa et al., “Potential of triphenylphosphine as solid-state NMR probe for studying the noble metal distribution on porous supports,” Microporous and Mesoporous Materials, p. 109778, Oct. 2020, doi: 10.1016/j.micromeso.2019.109778.
    2. Kvande et al., “Comparing the Nature of Active Sites in Cu-loaded SAPO-34 and SSZ-13 for the Direct Conversion of Methane to Methanol,” Catalysts, vol. 10, Art. no. 2, Feb. 2020, doi: 10.3390/catal10020191.
    3. S. Chen et al., “Raising the COx Methanation Activity of a Ru/γ-Al2O3 Catalyst by Activated Modification of Metal–Support Interactions,” Angewandte Chemie International Edition, vol. 59, Art. no. 50, 2020, doi: https://doi.org/10.1002/anie.202007228.
    4. Z. Li et al., “Effect of aluminum and sodium on the sorption of water and methanol in microporous MFI-type zeolites and mesoporous SBA-15 materials,” Adsorption, Oct. 2020, doi: 10.1007/s10450-020-00275-8.
  7. 2019

    1. E. Borfecchia et al., “Evolution of active sites during selective oxidation of methane to methanol over Cu-CHA and Cu-MOR zeolites as monitored by operando XAS,” Catalysis Today, vol. 333, pp. 17–27, Aug. 2019, doi: 10.1016/j.cattod.2018.07.028.
    2. D. K. Pappas et al., “Cu-Exchanged Ferrierite Zeolite for the Direct CH4 to CH3OH Conversion: Insights on Cu Speciation from X-Ray Absorption Spectroscopy,” Topics in Catalysis, vol. 62, Art. no. 7, Aug. 2019, doi: 10.1007/s11244-019-01160-7.
    3. K. A. Lomachenko et al., “The impact of reaction conditions and material composition on the stepwise methane to methanol conversion over Cu-MOR: An operando XAS study,” Catalysis Today, vol. 336, pp. 99–108, Oct. 2019, doi: 10.1016/j.cattod.2019.01.040.
    4. R. Y. Brogaard et al., “Ethene Dimerization on Zeolite-Hosted Ni Ions: Reversible Mobilization of the Active Site,” ACS Catalysis, vol. 9, Art. no. 6, May 2019, doi: 10.1021/acscatal.9b00721.
    5. M. Dyballa et al., “Zeolite Surface Methoxy Groups as Key Intermediates in the Stepwise Conversion of Methane to Methanol,” ChemCatChem, vol. 11, Art. no. 20, Sep. 2019, doi: 10.1002/cctc.201901315.
    6. F. Ziegler et al., “Olefin Metathesis in Confined Geometries: A Biomimetic Approach toward Selective Macrocyclization,” Journal of the American Chemical Society, vol. 141, Art. no. 48, Nov. 2019, doi: 10.1021/jacs.9b08776.
    7. M. Dyballa et al., “On How Copper Mordenite Properties Govern the Framework Stability and Activity in the Methane-to-Methanol Conversion,” ACS Catalysis, vol. 9, Art. no. 1, Dec. 2019, doi: 10.1021/acscatal.8b04437.
  8. 2018

    1. D. K. Pappas et al., “The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment,” Journal of the American Chemical Society, vol. 140, Art. no. 45, Oct. 2018, doi: 10.1021/jacs.8b08071.
    2. M. Dyballa et al., “Tuning the material and catalytic properties of SUZ-4 zeolites for the conversion of methanol or methane,” Microporous and Mesoporous Materials, vol. 265, pp. 112–122, Jul. 2018, doi: 10.1016/j.micromeso.2018.02.004.
    3. D. K. Pappas et al., “Understanding and Optimizing the Performance of Cu-FER for The Direct CH4 to CH3OH Conversion,” ChemCatChem, vol. 11, Art. no. 1, Dec. 2018, doi: 10.1002/cctc.201801542.
    4. M. Dyballa, U. Obenaus, M. Blum, and W. Dai, “Alkali metal ion exchanged ZSM-5 catalysts: on acidity and methanol-to-olefin performance,” CATALYSIS SCIENCE & TECHNOLOGY, vol. 8, Art. no. 17, Sep. 2018, doi: 10.1039/c8cy01032c.
    5. J. Holzinger et al., “Identification of Distinct Framework Aluminum Sites in Zeolite ZSM-23: A Combined Computational and Experimental 27Al NMR Study,” The Journal of Physical Chemistry C, vol. 123, Art. no. 13, Nov. 2018, doi: 10.1021/acs.jpcc.8b06891.
  9. 2017

    1. D. K. Pappas et al., “Methane to Methanol: Structure–Activity Relationships for Cu-CHA,” Journal of the American Chemical Society, vol. 139, Art. no. 42, Oct. 2017, doi: 10.1021/jacs.7b06472.
    2. D. Rojo-Gama et al., “A Straightforward Descriptor for the Deactivation of Zeolite Catalyst H-ZSM-5,” ACS Catalysis, vol. 7, Art. no. 12, Nov. 2017, doi: 10.1021/acscatal.7b02193.
    3. W. Dai et al., “Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density,” Catal. Sci. Technol., vol. 7, Art. no. 3, 2017, doi: 10.1039/C6CY02564A.
  10. 2016

    1. U. Obenaus, F. Neher, M. Scheibe, M. Dyballa, S. Lang, and M. Hunger, “Relationships between the Hydrogenation and Dehydrogenation Properties of Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Studied by In Situ MAS NMR Spectroscopy and Conventional Heterogeneous Catalysis,” The Journal of Physical Chemistry C, vol. 120, Art. no. 4, Jan. 2016, doi: 10.1021/acs.jpcc.5b11367.
    2. M. Dyballa et al., “Post-synthetic improvement of H-ZSM-22 zeolites for the methanol-to-olefin conversion,” MICROPOROUS AND MESOPOROUS MATERIALS, vol. 233, pp. 26–30, Oct. 2016, doi: 10.1016/j.micromeso.2016.06.044.
    3. M. Dyballa et al., “Parameters influencing the selectivity to propene in the MTO conversion on 10-ring zeolites: directly synthesized zeolites ZSM-5, ZSM-11, and ZSM-22,” APPLIED CATALYSIS A-GENERAL, vol. 510, pp. 233–243, Jan. 2016, doi: 10.1016/j.apcata.2015.11.017.
  11. 2015

    1. U. Obenaus, M. Dyballa, S. Lang, M. Scheibe, and M. Hunger, “Generation and Properties of Brønsted Acid Sites in Bifunctional Rh-, Ir-, Pd-, and Pt-Containing Zeolites Y Investigated by Solid-State NMR Spectroscopy,” The Journal of Physical Chemistry C, vol. 119, Art. no. 27, Jun. 2015, doi: 10.1021/acs.jpcc.5b03149.
    2. G. Näfe et al., “Deactivation behavior of alkali-metal zeolites in the dehydration of lactic acid to acrylic acid,” JOURNAL OF CATALYSIS, vol. 329, pp. 413–424, Sep. 2015, doi: 10.1016/j.jcat.2015.05.017.
    3. M. Dyballa et al., “Brønsted sites and structural stabilization effect of acidic low-silica zeolite A prepared by partial ammonium exchange,” Microporous and Mesoporous Materials, vol. 212, pp. 110–116, Aug. 2015, doi: 10.1016/j.micromeso.2015.03.030.
    4. W. Dai, M. Dyballa, G. Wu, L. Li, N. Guan, and M. Hunger, “Intermediates and Dominating Reaction Mechanism During the Early Period of the Methanol-to-Olefin Conversion on SAPO-41,” JOURNAL OF PHYSICAL CHEMISTRY C, vol. 119, Art. no. 5, Feb. 2015, doi: 10.1021/jp5118757.
    5. W. Dai et al., “Identification of tert-Butyl Cations in Zeolite H-ZSM-5: Evidence from NMR Spectroscopy and DFT Calculations,” ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol. 54, Art. no. 30, Jul. 2015, doi: 10.1002/anie.201502748.
    6. W. Dai et al., “Understanding the Early Stages of the Methanol-to-Olefin Conversion on H-SAPO-34,” ACS Catalysis, vol. 5, Art. no. 1, Dec. 2015, doi: 10.1021/cs5015749.
  12. 2014

    1. X. Sun, M. Dyballa, J. Yan, L. Li, N. Guan, and M. Hunger, “Solid-state NMR investigation of the 16/17O isotope exchange of oxygen species in pure-anatase and mixed-phase TiO2,” vol. 94, pp. 34–40, 2014, doi: 10.1016/j.cplett.2014.01.014.
  13. 2013

    1. H. Henning, M. Dyballa, M. Scheibe, E. Klemm, and M. Hunger, “In situ CF MAS NMR study of the pairwise incorporation of parahydrogen into olefins on rhodium-containing zeolites Y,” Chemical physics letters, vol. 555, pp. 258–262, 2013, doi: 10.1016/j.cplett.2012.10.068.
    2. M. Dyballa, E. Klemm, J. Weitkamp, and M. Hunger, “Effect of phosphate modification on the Bronsted acidity and methanol-to-olefin conversion activity of Zeolite ZSM-5,” vol. 85, Art. no. 11, 2013, doi: 10.1002/cite.201300066.
    3. D. Santi, S. Rabl, V. Calemma, M. Dyballa, M. Hunger, and J. Weitkamp, “Effect of noble metals on the strength of Bronsted acid sites in bifunctional zeolites,” vol. 5, Art. no. 6, 2013, doi: 10.1002/cctc.201200675.
  14. 2012

    1. M. Dyballa, M. Scheibe, M. Hunger, W. Dai, L. Li, and N. Guan, “PFG NMR self-diffusivities of ethane and ethene in large-crystalline SAPO-34 upon using as MTO catalyst,” 2012.
  15. 2010

    1. C. Lieder, S. Opelt, M. Dyballa, H. Henning, E. Klemm, and M. Hunger, “Adsorbate effect on AlO4(OH)2 centers in the metal-organic framework MIL-53 investigated by solid-state NMR spectroscopy,” The journal of physical chemistry. C, Nanomaterials and interfaces, vol. 114, Art. no. 39, 2010, doi: 10.1021/jp105700b.
since 2018   
Scientist in the MAS NMR spectroscopy group at the Institute of Chemical Technology, Stuttgart.
2016 - 2018
PostDoc at the University of Oslo (with Prof. Stian Svelle) and at SINTEF, Oslo (with Dr. Bjørnar Arstad).
2012 - 2015 
PhD in the MAS NMR spectroscopy group at the Institute of Chemical Technology, Stuttgart (with Apl. Prof. Michael Hunger). Title: "Die Entwicklung neuer Zeolithkatalysatoren für die Methanol-zu-Olefin-Umsetzung (The development of novel zeolite catalysts for the methanol-to-olefin conversion)".
2011

Diploma Thesis in the Bioinformatics group at the Institute of Technical Biochemistry, Stuttgart (with Apl. Prof. Jürgen Pleiss). Title: "Quantifizierung der Bindung von Peptiden an ZnO durch Fluoreszenzmessungen (Quantification of peptide binding to ZnO via fluorescence measurements)".

2006 - 2011  Study of Chemistry at the University of Stuttgart.
Zum Seitenanfang